ﻻ يوجد ملخص باللغة العربية
Competition and cooperation among orders is at the heart of many-body physics in strongly correlated materials and leads to their rich physical properties. It is crucial to investigate what impact many-body physics has on extreme nonlinear optical phenomena, with the possibility of controlling material properties by light. However, the effect of competing orders and electron-electron correlations on highly nonlinear optical phenomena has not yet been experimentally clarified. Here, we investigated high-order harmonic generation from the Mott-insulating phase of Ca2RuO4. Changing the gap energy in Ca2RuO4 as a function of temperature, we observed a strong enhancement of high order harmonic generation at 50 K, increasing up to several hundred times compared to room temperature. We discovered that this enhancement can be well-reproduced by an empirical scaling law that depends only on the material gap energy and photon emission energy. Such scaling law cannot be explained by a simple two-band model under the single electron approximation. Our results suggest that the highly nonlinear optical response of strongly correlated materials is deeply coupled to their electron-electron correlations and resultant many-body electronic structure.
Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under AC driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cut
We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to understand its relation to elementary excitations as well as the similarities and differences to semiconductors. The simulations are based on the infinite time-e
With a combination of numerical methods, including quantum Monte Carlo, exact diagonalization, and a simplified dynamical mean-field model, we consider the attosecond charge dynamics of electrons induced by strong-field laser pulses in two-dimensiona
We study the high harmonic generation (HHG) in Mott insulators using Floquet dynamical mean-field theory (DMFT). We show that the main origin of the HHG in Mott insulators is the doublon-holon recombination, and that the character of the HHG spectrum
High harmonic generation (HHG) has unleashed the power of strong laser physics in solids. Here we investigate HHG from a large system, solid C$_{60}$, with 240 valence electrons engaging harmonic generation at each crystal momentum, the first of this