ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Graph Learning for Scalable Multi-view Clustering

107   0   0.0 ( 0 )
 نشر من قبل Quanxue Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph-based multi-view clustering has become an active topic due to the efficiency in characterizing both the complex structure and relationship between multimedia data. However, existing methods have the following shortcomings: (1) They are inefficient or even fail for graph learning in large scale due to the graph construction and eigen-decomposition. (2) They cannot well exploit both the complementary information and spatial structure embedded in graphs of different views. To well exploit complementary information and tackle the scalability issue plaguing graph-based multi-view clustering, we propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization. Specifically, we construct a hidden and tractable large graph by anchor graph for each view and well exploit complementary information embedded in anchor graphs of different views by tensor Schatten p-norm regularizer. Finally, we develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model. Extensive experimental results on several datasets indicate that our proposed method outperforms some state-of-the-art multi-view clustering algorithms.

قيم البحث

اقرأ أيضاً

Hashing techniques, also known as binary code learning, have recently gained increasing attention in large-scale data analysis and storage. Generally, most existing hash clustering methods are single-view ones, which lack complete structure or comple mentary information from multiple views. For cluster tasks, abundant prior researches mainly focus on learning discrete hash code while few works take original data structure into consideration. To address these problems, we propose a novel binary code algorithm for clustering, which adopts graph embedding to preserve the original data structure, called (Graph-based Multi-view Binary Learning) GMBL in this paper. GMBL mainly focuses on encoding the information of multiple views into a compact binary code, which explores complementary information from multiple views. In particular, in order to maintain the graph-based structure of the original data, we adopt a Laplacian matrix to preserve the local linear relationship of the data and map it to the Hamming space. Considering different views have distinctive contributions to the final clustering results, GMBL adopts a strategy of automatically assign weights for each view to better guide the clustering. Finally, An alternating iterative optimization method is adopted to optimize discrete binary codes directly instead of relaxing the binary constraint in two steps. Experiments on five public datasets demonstrate the superiority of our proposed method compared with previous approaches in terms of clustering performance.
Graph-based multi-view clustering aiming to obtain a partition of data across multiple views, has received considerable attention in recent years. Although great efforts have been made for graph-based multi-view clustering, it remains a challenge to fuse characteristics from various views to learn a common representation for clustering. In this paper, we propose a novel Consistent Multiple Graph Embedding Clustering framework(CMGEC). Specifically, a multiple graph auto-encoder(M-GAE) is designed to flexibly encode the complementary information of multi-view data using a multi-graph attention fusion encoder. To guide the learned common representation maintaining the similarity of the neighboring characteristics in each view, a Multi-view Mutual Information Maximization module(MMIM) is introduced. Furthermore, a graph fusion network(GFN) is devised to explore the relationship among graphs from different views and provide a common consensus graph needed in M-GAE. By jointly training these models, the common latent representation can be obtained which encodes more complementary information from multiple views and depicts data more comprehensively. Experiments on three types of multi-view datasets demonstrate CMGEC outperforms the state-of-the-art clustering methods.
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data poi nts. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building a $ntimes n$ graph, where $n$ is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multi-view data is also proposed, which is linear scaled with respect to $n$. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
118 - Jie Xu , Yazhou Ren , Huayi Tang 2021
Multi-view clustering, a long-standing and important research problem, focuses on mining complementary information from diverse views. However, existing works often fuse multiple views representations or handle clustering in a common feature space, w hich may result in their entanglement especially for visual representations. To address this issue, we present a novel VAE-based multi-view clustering framework (Multi-VAE) by learning disentangled visual representations. Concretely, we define a view-common variable and multiple view-peculiar variables in the generative model. The prior of view-common variable obeys approximately discrete Gumbel Softmax distribution, which is introduced to extract the common cluster factor of multiple views. Meanwhile, the prior of view-peculiar variable follows continuous Gaussian distribution, which is used to represent each views peculiar visual factors. By controlling the mutual information capacity to disentangle the view-common and view-peculiar representations, continuous visual information of multiple views can be separated so that their common discrete cluster information can be effectively mined. Experimental results demonstrate that Multi-VAE enjoys the disentangled and explainable visual representations, while obtaining superior clustering performance compared with state-of-the-art methods.
201 - Quanxue Gao , Wei Xia , Xinbo Gao 2021
Despite the impressive clustering performance and efficiency in characterizing both the relationship between data and cluster structure, existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the expen sive time burden due to both the construction of graphs and eigen-decomposition of Laplacian matrix, and fail to explore the cluster structure of large-scale data. Moreover, they require a post-processing to get the final clustering, resulting in suboptimal performance. Furthermore, rank of the learned view-consensus graph cannot approximate the target rank. In this paper, drawing the inspiration from the bipartite graph, we propose an effective and efficient graph learning model for multi-view clustering. Specifically, our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm, which well characterizes both the spatial structure and complementary information embedded in graphs of different views. We learn view-consensus graph with adaptively weighted strategy and connectivity constraint such that the connected components indicates clusters directly. Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size. Extensive experimental results indicate that our method is superior to state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا