ترغب بنشر مسار تعليمي؟ اضغط هنا

Face Identification Proficiency Test Designed Using Item Response Theory

110   0   0.0 ( 0 )
 نشر من قبل Geraldine Jeckeln
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Measures of face identification proficiency are essential to ensure accurate and consistent performance by professional forensic face examiners and others who perform face identification tasks in applied scenarios. Current proficiency tests rely on static sets of stimulus items, and so, cannot be administered validly to the same individual multiple times. To create a proficiency test, a large number of items of known difficulty must be assembled. Multiple tests of equal difficulty can be constructed then using subsets of items. Here, we introduce a proficiency test, the Triad Identity Matching (TIM) test, based on stimulus difficulty measures based on Item Response Theory (IRT). Participants view face-image triads (N=225) (two images of one identity and one image of a different identity) and select the different identity. In Experiment 1, university students (N=197) showed wide-ranging accuracy on the TIM test. Furthermore, IRT modeling demonstrated that the TIM test produces items of various difficulty levels. In Experiment 2, IRT-based item difficulty measures were used to partition the TIM test into three equally easy and three equally difficult subsets. Simulation results indicated that the full set, as well as curated subsets, of the TIM items yielded reliable estimates of subject ability. In summary, the TIM test can provide a starting point for developing a framework that is flexible, calibrated, and adaptive to measure proficiency across various ability levels (e.g., professionals or populations with face processing deficits)



قيم البحث

اقرأ أيضاً

Recent years have seen numerous NLP datasets introduced to evaluate the performance of fine-tuned models on natural language understanding tasks. Recent results from large pretrained models, though, show that many of these datasets are largely satura ted and unlikely to be able to detect further progress. What kind of datasets are still effective at discriminating among strong models, and what kind of datasets should we expect to be able to detect future improvements? To measure this uniformly across datasets, we draw on Item Response Theory and evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples. We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models, while SNLI, MNLI, and CommitmentBank seem to be saturated for current strong models. We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
72 - Brahim Lamine 2015
Conceptual tests are widely used by physics instructors to assess students conceptual understanding and compare teaching methods. It is common to look at students changes in their answers between a pre-test and a post-test to quantify a transition in students conceptions. This is often done by looking at the proportion of incorrect answers in the pre-test that changes to correct answers in the post-test -- the gain -- and the proportion of correct answers that changes to incorrect answers -- the loss. By comparing theoretical predictions to experimental data on the Force Concept Inventory, we shown that Item Response Theory (IRT) is able to fairly well predict the observed gains and losses. We then use IRT to quantify the students changes in a test-retest situation when no learning occurs and show that $i)$ up to 25% of total answers can change due to the non-deterministic nature of students answer and that $ii)$ gains and losses can go from 0% to 100%. Still using IRT, we highlight the conditions that must satisfy a test in order to minimize gains and losses when no learning occurs. Finally, recommandations on the interpretation of such pre/post-test progression with respect to the initial level of students are proposed.
Research-based assessment instruments (RBAIs) are ubiquitous throughout both physics instruction and physics education research. The vast majority of analyses involving student responses to RBAI questions have focused on whether or not a student sele cts correct answers and using correctness to measure growth. This approach often undervalues the rich information that may be obtained by examining students particular choices of incorrect answers. In the present study, we aim to reveal some of this valuable information by quantitatively determining the relative correctness of various incorrect responses. To accomplish this, we propose an assumption that allow us to define relative correctness: students who have a high understanding of Newtonian physics are likely to answer more questions correctly and also more likely to choose better incorrect responses, than students who have a low understanding. Analyses using item response theory align with this assumption, and Bocks nominal response model allows us to uniquely rank each incorrect response. We present results from over 7,000 students responses to the Force and Motion Conceptual Evaluation.
Item Response Theory (IRT) is a ubiquitous model for understanding human behaviors and attitudes based on their responses to questions. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving psychom etric modeling leading to improved scientific understanding and public policy. However, while larger datasets allow for more flexible approaches, many contemporary algorithms for fitting IRT models may also have massive computational demands that forbid real-world application. To address this bottleneck, we introduce a variational Bayesian inference algorithm for IRT, and show that it is fast and scalable without sacrificing accuracy. Applying this method to five large-scale item response datasets from cognitive science and education yields higher log likelihoods and higher accuracy in imputing missing data than alternative inference algorithms. Using this new inference approach we then generalize IRT with expressive Bayesian models of responses, leveraging recent advances in deep learning to capture nonlinear item characteristic curves (ICC) with neural networks. Using an eigth-grade mathematics test from TIMSS, we show our nonlinear IRT models can capture interesting asymmetric ICCs. The algorithm implementation is open-source, and easily usable.
The goal of item response theoretic (IRT) models is to provide estimates of latent traits from binary observed indicators and at the same time to learn the item response functions (IRFs) that map from latent trait to observed response. However, in ma ny cases observed behavior can deviate significantly from the parametric assumptions of traditional IRT models. Nonparametric IRT models overcome these challenges by relaxing assumptions about the form of the IRFs, but standard tools are unable to simultaneously estimate flexible IRFs and recover ability estimates for respondents. We propose a Bayesian nonparametric model that solves this problem by placing Gaussian process priors on the latent functions defining the IRFs. This allows us to simultaneously relax assumptions about the shape of the IRFs while preserving the ability to estimate latent traits. This in turn allows us to easily extend the model to further tasks such as active learning. GPIRT therefore provides a simple and intuitive solution to several longstanding problems in the IRT literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا