ﻻ يوجد ملخص باللغة العربية
Conceptual tests are widely used by physics instructors to assess students conceptual understanding and compare teaching methods. It is common to look at students changes in their answers between a pre-test and a post-test to quantify a transition in students conceptions. This is often done by looking at the proportion of incorrect answers in the pre-test that changes to correct answers in the post-test -- the gain -- and the proportion of correct answers that changes to incorrect answers -- the loss. By comparing theoretical predictions to experimental data on the Force Concept Inventory, we shown that Item Response Theory (IRT) is able to fairly well predict the observed gains and losses. We then use IRT to quantify the students changes in a test-retest situation when no learning occurs and show that $i)$ up to 25% of total answers can change due to the non-deterministic nature of students answer and that $ii)$ gains and losses can go from 0% to 100%. Still using IRT, we highlight the conditions that must satisfy a test in order to minimize gains and losses when no learning occurs. Finally, recommandations on the interpretation of such pre/post-test progression with respect to the initial level of students are proposed.
Ishimoto, Davenport, and Wittmann have previously reported analyses of data from student responses to the Force and Motion Conceptual Evaluation (FMCE), in which they used item response curves (IRCs) to make claims about American and Japanese student
Measures of face identification proficiency are essential to ensure accurate and consistent performance by professional forensic face examiners and others who perform face identification tasks in applied scenarios. Current proficiency tests rely on s
Research-based assessment instruments (RBAIs) are ubiquitous throughout both physics instruction and physics education research. The vast majority of analyses involving student responses to RBAI questions have focused on whether or not a student sele
Recent years have seen numerous NLP datasets introduced to evaluate the performance of fine-tuned models on natural language understanding tasks. Recent results from large pretrained models, though, show that many of these datasets are largely satura
This paper presents the first item response theory (IRT) analysis of the national data set on introductory, general education, college-level astronomy teaching using the Light and Spectroscopy Concept Inventory (LSCI). We used the difference between