ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting a Supervised Index for High-accuracy Parameter Estimation in Low SNR

93   0   0.0 ( 0 )
 نشر من قبل Kaijie Xu
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English
 تأليف Kaijie Xu




اسأل ChatGPT حول البحث

Performance of parameter estimation is one of the most important issues in array signal processing. The root mean square error, probability of success, resolution probabilities, and computational complexity are frequently used indexes for evaluating the performance of the parameter estimation methods. However, a common characteristic of these indexes is that they are unsupervised indexes, and are passively used for evaluating the estimation results. In other words, these indexes cannot participate in the design of estimation methods. It seems that exploiting a validity supervised index for the parameter estimation that can guide the design of the methods will be an interesting and meaningful work. In this study, we exploit an index to build a supervised learning model of the parameter estimation. With the developed model we refine the signal subspace so as to enhance the performance of the parameter estimation method. The main characteristic of the proposed model is a circularly applied feedback of the estimated parameter for refining the estimated subspace. It is a closed loop and supervised method not reported before. This research opens a specific way for improving the performance of the parameter estimation by a supervised index. However, the proposed method is still unsatisfying in some scopes of signal-to-noise ratio (SNR). We believe that exploiting a validity index for the parameter estimation in array signal processing is still a general and interesting problem.

قيم البحث

اقرأ أيضاً

I outline a method for estimating astrophysical parameters (APs) from multidimensional data. It is a supervised method based on matching observed data (e.g. a spectrum) to a grid of pre-labelled templates. However, unlike standard machine learning me thods such as ANNs, SVMs or k-nn, this algorithm explicitly uses domain information to better weight each data dimension in the estimation. Specifically, it uses the sensitivity of each measured variable to each AP to perform a local, iterative interpolation of the grid. It avoids both the non-uniqueness problem of global regression as well as the grid resolution limitation of nearest neighbours.
Maximum eigenvalue detection (MED) is an important application of random matrix theory in spectrum sensing and signal detection. However, in small signal-to-noise ratio environment, the maximum eigenvalue of the representative signal is at the edge o f Marchenko-Pastur (M-P) law bulk and meets the Tracy-Widom distribution. Since the distribution of Tracy-Widom has no closed-form expression, it brings great difficulty in processing. In this paper, we propose a shifting maximum eigenvalue (SMED) algorithm, which shifts the maximum eigenvalue out of the M-P law bulk by combining an auxiliary signal associated with the signal to be detected. According to the random matrix theory, the shifted maximum eigenvalue is consistent with Gaussian distribution. The proposed SMED not only simplifies the detection algorithm, but also greatly improve the detection performance. In this paper, the performance of SMED, MED and trace (FMD) algorithm is analyzed and the theoretical performance comparisons are obtained. The algorithm and theoretical results are verified by the simulations in different signal environments.
156 - Xuesong Cai , , Wei Fan 2019
Millimeter wave (mm-wave) communication with large-scale antenna array configuration is seen as the key enabler of the next generation communication systems. Accurate knowledge of the mm-wave propagation channels is fundamental and essential. In this contribution, a novel complexity-efficient high resolution parameter estimation (HRPE) algorithm is proposed for the mm-wave channel with large-scale uniform circular array (UCA) applied. The proposed algorithm is able to obtain the high-resolution estimation results of the spherical channel propagation parameters. The prior channel information in the delay domain, i.e., the delay trajectories of individual propagation paths observed across the array elements, is exploited, by combining the high-resolution estimation principle and the phase mode excitation technique. Fast initializations, effective interference cancellations and reduced searching spaces achieved by the proposed schemes significantly decrease the algorithm complexity. Furthermore, the channel spatial non-stationarity in path gain across the array elements is considered for the first time in the literature for propagation parameter estimation, which is beneficial to obtain more realistic results as well as to decrease the complexity. A mm-wave measurement campaign at the frequency band of 28-30 GHz using a large-scale UCA is exploited to demonstrate and validate the proposed HRPE algorithm.
We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.
The capability to achieve high-precision positioning accuracy has been considered as one of the most critical requirements for vehicle-to-everything (V2X) services in the fifth-generation (5G) cellular networks. The non-line-of-sight (NLOS) connectiv ity, coverage, reliability requirements, the minimum number of available anchors, and bandwidth limitations are among the main challenges to achieve high accuracy in V2X services. This work provides an overview of the potential solutions to provide the new radio (NR) V2X users (UEs) with high positioning accuracy in the future 3GPP releases. In particular, we propose a novel selective positioning solution to dynamically switch between different positioning technologies to improve the overall positioning accuracy in NR V2X services, taking into account the locations of V2X UEs and the accuracy of the collected measurements. Furthermore, we use high-fidelity system-level simulations to evaluate the performance gains of fusing the positioning measurements from different technologies in NR V2X services. Our numerical results show that the proposed hybridized schemes achieve a positioning error $boldsymbol{leq}$ 3 m with $boldsymbol{approx}$ 76% availability compared to $boldsymbol{approx}$ 55% availability when traditional positioning methods are used. The numerical results also reveal a potential gain of $boldsymbol{approx}$ 56% after leveraging the road-side units (RSUs) to improve the tail of the UEs positioning error distribution, i.e., worst-case scenarios, in NR V2X services.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا