ﻻ يوجد ملخص باللغة العربية
The distribution of hot interstellar medium in early-type galaxies bears the imprint of the various astrophysical processes it underwent during its evolution. The X-ray observations of these galaxies have identified various structural features related to AGN and stellar feedback and environmental effects such as merging and sloshing. In our XMM-Newton Galaxy Atlas (NGA) project, we analyze archival observations of 38 ETGs, utilizing the high sensitivity and large field of view of XMM-Newton to construct spatially resolved 2D spectral maps of the hot gas halos. To illustrate our NGA data products in conjunction with the Chandra Galaxy Atlas (Kim et al. 2019), we describe two distinct galaxies - NGC 4636 and NGC 1550, in detail. We discuss their evolutionary history with a particular focus on the asymmetric distribution of metal-enriched, low-entropy gas caused by sloshing and AGN- driven uplift. We will release the NGA data products to a dedicated website, which users can download to perform further analyses.
The hot ISM in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. The structural features of the hot gas identified by Chandra observations point to key evolutionary mechanisms, (e.g., AGN and stellar feed
While theory and simulations indicate that galaxy mergers play an important role in the cosmological evolution of accreting black holes and their host galaxies, samples of Active Galactic Nuclei (AGN) in galaxies at close separations are still small.
Wide area X-ray and far infrared surveys are a fundamental tool to investigate the link between AGN growth and star formation, especially in the low-redshift universe (z<1). The Herschel Terahertz Large Area survey (H-ATLAS) has covered 550 deg^2 in
We present the analysis of an XMM-Newton observation of the M17 nebula. The X-ray point source population consists of massive O-type stars and a population of probable low-mass pre-main sequence stars. CEN1a,b and OI352, the X-ray brightest O-type st
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found