ترغب بنشر مسار تعليمي؟ اضغط هنا

On Stochastic PDEs for the pricing of derivatives in a multi-dimensional diffusion framework

196   0   0.0 ( 0 )
 نشر من قبل Kaustav Das
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a multi-dimensional diffusion framework, the price of a financial derivative can be expressed as an iterated conditional expectation, where the inner conditional expectation conditions on the future of an auxiliary process that enters into the dynamics for the spot. Inspired by results from non-linear filtering theory, we show that this inner conditional expectation solves a backward SPDE (a so-called `conditional Feynman-Kac formula), thereby establishing a connection between SPDE and derivative pricing theory. The benefits of this representation are potentially significant and of both theoretical and practical interest. In particular, this representation leads to an alternative class of so-called mixed Monte-Carlo / PDE numerical methods.



قيم البحث

اقرأ أيضاً

Replacing Black-Scholes driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the fin ancial market. We present the development, testing, and implementation of a simplified alternative to using fractional Brownian motion for pricing derivatives. By relaxing the assumption of past independence of Brownian motion but retaining the Markovian property, we are developing a competing model that retains the mathematical simplicity of the standard Black-Scholes model but also has the improved accuracy of allowing for past dependence. This is achieved by replacing Black-Scholes underlying process, Brownian motion, with a particular Gaussian Markov process, proposed by Vladimir Dobri{c} and Francisco Ojeda.
Consider a financial market with nonnegative semimartingales which does not need to have a num{e}raire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are al lowed to add a savings account to the market. We will prove that in this sense the market is free of arbitrage if and only if there exists an equivalent local martingale deflator which is a multiplicative special semimartingale. In this case, the additional savings account relates to the finite variation part of the multiplicative decomposition of the deflator.
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finit ely many age-dependent semi-Markov processes. We further allow the volatility coefficient to depend on time explicitly. Under these market assumptions, we study locally risk minimizing pricing of a class of European options. It is shown that the price function can be obtained by solving a non-local B-S-M type PDE. We establish existence and uniqueness of a classical solution of the Cauchy problem. We also find another characterization of price function via a system of Volterra integral equation of second kind. This alternative representation leads to computationally efficient methods for finding price and hedging. Finally, we analyze the PDE to establish continuous dependence of the solution on the instantaneous transition rates of semi-Markov processes. An explicit expression of quadratic residual risk is also obtained.
We develop a robust framework for pricing and hedging of derivative securities in discrete-time financial markets. We consider markets with both dynamically and statically traded assets and make minimal measurability assumptions. We obtain an abstrac t (pointwise) Fundamental Theorem of Asset Pricing and Pricing--Hedging Duality. Our results are general and in particular include so-called model independent results of Acciao et al. (2016), Burzoni et al. (2016) as well as seminal results of Dalang et al. (1990) in a classical probabilistic approach. Our analysis is scenario--based: a model specification is equivalent to a choice of scenarios to be considered. The choice can vary between all scenarios and the set of scenarios charged by a given probability measure. In this way, our framework interpolates between a model with universally acceptable broad assumptions and a model based on a specific probabilistic view of future asset dynamics.
140 - Jun Sekine , Akihiro Tanaka 2020
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged filtration are reviewed. Next, the pricing/hedging problem for defaultable over-the-counter (OTC) derivative securities is described using such BSDEs. An explicit sufficient condition is given to ensure the non-existence of an arbitrage opportunity for both the seller and buyer of the derivative securities. Furthermore, an explicit pricing formula is presented in which XVA is interpreted as approximated correction terms of the theoretical fair price.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا