ﻻ يوجد ملخص باللغة العربية
In a multi-dimensional diffusion framework, the price of a financial derivative can be expressed as an iterated conditional expectation, where the inner conditional expectation conditions on the future of an auxiliary process that enters into the dynamics for the spot. Inspired by results from non-linear filtering theory, we show that this inner conditional expectation solves a backward SPDE (a so-called `conditional Feynman-Kac formula), thereby establishing a connection between SPDE and derivative pricing theory. The benefits of this representation are potentially significant and of both theoretical and practical interest. In particular, this representation leads to an alternative class of so-called mixed Monte-Carlo / PDE numerical methods.
Replacing Black-Scholes driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the fin
Consider a financial market with nonnegative semimartingales which does not need to have a num{e}raire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are al
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finit
We develop a robust framework for pricing and hedging of derivative securities in discrete-time financial markets. We consider markets with both dynamically and statically traded assets and make minimal measurability assumptions. We obtain an abstrac
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged