ﻻ يوجد ملخص باللغة العربية
Consider a financial market with nonnegative semimartingales which does not need to have a num{e}raire. We are interested in the absence of arbitrage in the sense that no self-financing portfolio gives rise to arbitrage opportunities, where we are allowed to add a savings account to the market. We will prove that in this sense the market is free of arbitrage if and only if there exists an equivalent local martingale deflator which is a multiplicative special semimartingale. In this case, the additional savings account relates to the finite variation part of the multiplicative decomposition of the deflator.
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modell
We propose an extension of the Cox-Ross-Rubinstein (CRR) model based on q-binomial (or Kemp) random walks, with application to default with logistic failure rates. This model allows us to consider time-dependent switching probabilities varying accord
The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) =
In a multi-dimensional diffusion framework, the price of a financial derivative can be expressed as an iterated conditional expectation, where the inner conditional expectation conditions on the future of an auxiliary process that enters into the dyn
We consider an incomplete multi-asset binomial market model. We prove that for a wide class of contingent claims the extremal multi-step martingale measure is a power of the corresponding single-step extremal martingale measure. This allows for close