ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadratic first integrals of time-dependent dynamical systems of the form $ddot{q}^{a}= -Gamma^{a}_{bc}dot{q}^{b} dot{q}^{c} -omega(t)Q^{a}(q)$

94   0   0.0 ( 0 )
 نشر من قبل Antonios Mitsopoulos Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the time-dependent dynamical system $ddot{q}^{a}= -Gamma_{bc}^{a}dot{q}^{b}dot{q}^{c}-omega(t)Q^{a}(q)$ where $omega(t)$ is a non-zero arbitrary function and the connection coefficients $Gamma^{a}_{bc}$ are computed from the kinetic metric (kinetic energy) of the system. In order to determine the quadratic first integrals (QFIs) $I$ we assume that $I=K_{ab}dot{q}^{a} dot{q}^{b} +K_{a}dot{q}^{a}+K$ where the unknown coefficients $K_{ab}, K_{a}, K$ are tensors depending on $t, q^{a}$ and impose the condition $frac{dI}{dt}=0$. This condition leads to a system of partial differential equations (PDEs) involving the quantities $K_{ab}, K_{a}, K,$ $omega(t)$ and $Q^{a}(q)$. From these PDEs, it follows that $K_{ab}$ is a Killing tensor (KT) of the kinetic metric. We use the KT $K_{ab}$ in two ways: a. We assume a general polynomial form in $t$ both for $K_{ab}$ and $K_{a}$; b. We express $K_{ab}$ in a basis of the KTs of order 2 of the kinetic metric assuming the coefficients to be functions of $t$. In both cases, this leads to a new system of PDEs whose solution requires that we specify either $omega(t)$ or $Q^{a}(q)$. We consider first that $omega(t)$ is a general polynomial in $t$ and find that in this case the dynamical system admits two independent QFIs which we collect in a Theorem. Next, we specify the quantities $Q^{a}(q)$ to be the generalized time-dependent Kepler potential $V=-frac{omega (t)}{r^{ u}}$ and determine the functions $omega(t)$ for which QFIs are admitted. We extend the discussion to the non-linear differential equation $ddot{x}=-omega(t)x^{mu }+phi (t)dot{x}$ $(mu eq -1)$ and compute the relation between the coefficients $omega(t), phi(t)$ so that QFIs are admitted. We apply the results to determine the QFIs of the generalized Lane-Emden equation.

قيم البحث

اقرأ أيضاً

Recent discoveries by Belle and BESIII of charged exotic quarkonium-like resonances provide fresh impetus for study of heavy exotic hadrons. In the limit N_c --> infinity, M_Q --> infinity, the (Qbar Q qbar q) tetraquarks (TQ-s) are expected to be na rrow and slightly below or above the (Qbar q) and (Q qbar) two-meson threshold. The isoscalar TQ-s manifest themselves by decay to (Qbar Q) pi pi, and the ~30 MeV heavier charged isotriplet TQ-s by decays into (Qbar Q) pi. The new data strongly suggest that the real world with N_c=3, Q=c,b and q,q = u,d is qualitatively described by the above limit. We discuss the relevant theoretical estimates and suggest new signatures for TQ-s in light of the recent discoveries. We also consider baryon-like states (Q Q qbar qbar), which if found will be direct evidence not just for near-threshold binding of two heavy mesons, but for genuine tetraquarks with novel color networks. We stress the importance of experimental search for doubly-heavy baryons in this context.
Nonextensive statistical mechanics has been a source of investigation in mathematical structures such as deformed algebraic structures. In this work, we present some consequences of $q$-operations on the construction of $q$-numbers for all numerical sets. Based on such a construction, we present a new product that distributes over the $q$-sum. Finally, we present different patterns of $q$-Pascals triangles, based on $q$-sum, whose elements are $q$-numbers.
79 - Guoce Xin , Yingrui Zhang 2021
We give two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{vec{k}}(q,t)$ for $vec{k}=(k_1,k_2,k_3)$. One is by MacMahons partition analysis as we proposed; the other is by a direct bijection.
66 - Federico Zullo 2015
We construct the Baxters operator and the corresponding Baxters equation for a quantum version of the Ablowitz Ladik model. The result is achieved by looking at the quantum analogue of the classical Backlund transformations. For comparison we find th e same result by using the well-known Bethe ansatz technique. General results about integrable models governed by the same r-matrix algebra will be given. The Baxters equation comes out to be a q-difference equation involving both the trace and the quantum determinant of the monodromy matrix. The spectrality property of the classical Backlund transformations gives a trace formula representing the classical analogue of the Baxters equation. An explicit q-integral representation of the Baxters operator is discussed.
We consider a family of solutions of $q-$difference Riccati equation, and prove the meromorphic solutions of $q-$difference Riccati equation and corresponding second order $q-$difference equation are concerning with $q-$gamma function. The growth and value distribution of differences on solutions of $q-$difference Riccati equation are also investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا