ﻻ يوجد ملخص باللغة العربية
We construct the Baxters operator and the corresponding Baxters equation for a quantum version of the Ablowitz Ladik model. The result is achieved by looking at the quantum analogue of the classical Backlund transformations. For comparison we find the same result by using the well-known Bethe ansatz technique. General results about integrable models governed by the same r-matrix algebra will be given. The Baxters equation comes out to be a q-difference equation involving both the trace and the quantum determinant of the monodromy matrix. The spectrality property of the classical Backlund transformations gives a trace formula representing the classical analogue of the Baxters equation. An explicit q-integral representation of the Baxters operator is discussed.
We construct a local tri-Hamiltonian structure of the Ablowitz-Ladik hierarchy, and compute the central invariants of the associated bihamiltonian structures. We show that the central invariants of one of the bihamiltonian structures are equal to 1/2
The scalar products, form factors and correlation functions of the XXZ spin chain with twisted (or antiperiodic) boundary condition are obtained based on the inhomogeneous $T-Q$ relation and the Bethe states constructed via the off-diagonal Bethe Ans
The exact solution of an integrable anisotropic Heisenberg spin chain with nearest-neighbour, next-nearest-neighbour and scalar chirality couplings is studied, where the boundary condition is the antiperiodic one. The detailed construction of Hamilto
Complete integrability and multisoliton solutions are discussed for a multicomponent Ablowitz-Ladik system with branched dispersion relation. It is also shown that starting from a diagonal (in two-dimensions) completely integrable Ablowitz-Ladik equa
In this paper we study in a Hilbert space a homogeneous linear second order difference equation with nonconstant and noncommuting operator coefficients. We build its exact resolutive formula consisting in the explicit non-iterative expression of a ge