ﻻ يوجد ملخص باللغة العربية
The Floquet Hamiltonian has often been used to describe a time-periodic system. Nevertheless, because the Floquet Hamiltonian depends on a micro-motion parameter, the Floquet Hamiltonian with a fixed micro-motion parameter cannot faithfully represent a driven system, which manifests as the anomalous edge states. Here we show that an accurate description of a Floquet system requires a set of Hamiltonian exhausting all values of the micro-motion parameter, and this micro-motion parameter can be viewed as an extra synthetic dimension of the system. Therefore, we show that a $d$-dimensional Floquet system can be described by a $d+1$-dimensional static Hamiltonian, and the advantage of this representation is that the periodic boundary condition is automatically imposed along the extra-dimension, which enables a straightforward definition of topological invariants. The topological invariant in the $d+1$-dimensional system can ensure a $d-1$-dimensional edge state of the $d$-dimensional Floquet system. Here we show two examples where the topological invariant is a three-dimensional Hopf invariant. We highlight that our scheme of classifying Floquet topology on the micro-motion space is different from the previous classification of Floquet topology on the time space.
Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in protecting Floquet many-body phases over exponentially long time, while the ultimate fate of such quasiconserved operators can signal thermalization to inf
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equiva
We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states whi
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermis golden rule (FGR), we develop a master equation
We analyze the dynamics of periodically-driven (Floquet) Hamiltonians with short- and long-range interactions, finding clear evidence for a thermalization time, $tau^*$, that increases exponentially with the drive frequency. We observe this behavior,