ﻻ يوجد ملخص باللغة العربية
We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermis golden rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives, under which the Floquet Hamiltonian is significantly dressed, and nontrivial Floquet engineering is present. The Floquet FGR depends on system size only weakly, enabling us to analyze the thermodynamic limit with small-system calculations. Our results also indicate that, during heating, the system approximately stays in the thermal state for the Floquet Hamiltonian with a gradually rising temperature.
We establish some general dynamical properties of lattice many-body systems that are subject to a high-frequency periodic driving. We prove that such systems have a quasi-conserved extensive quantity $H_*$, which plays the role of an effective static
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coheren
We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states whi
A study is made of the behavior of unstable states in simple models which nevertheless are realistic representations of situations occurring in nature. It is demonstrated that a non-exponential decay pattern will ultimately dominate decay due to a lo
We demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived from Fermis golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with the local photon density of states, an approach of