ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Architecture Search for Deep Image Prior

153   0   0.0 ( 0 )
 نشر من قبل Andrew Gilbert
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatically optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.



قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image degradation processes have been largely ignored. In this paper, we first propose a denoising-based IR algorithm, whose iterative steps can be computed efficiently. Then, the iterative process is unfolded into a deep neural network, which is composed of multiple denoisers modules interleaved with back-projection (BP) modules that ensure the observation consistencies. A convolutional neural network (CNN) based denoiser that can exploit the multi-scale redundancies of natural images is proposed. As such, the proposed network not only exploits the powerful denoising ability of DNNs, but also leverages the prior of the observation model. Through end-to-end training, both the denoisers and the BP modules can be jointly optimized. Experimental results on several IR tasks, e.g., image denoisig, super-resolution and deblurring show that the proposed method can lead to very competitive and often state-of-the-art results on several IR tasks, including image denoising, deblurring and super-resolution.
Image captioning transforms complex visual information into abstract natural language for representation, which can help computers understanding the world quickly. However, due to the complexity of the real environment, it needs to identify key objec ts and realize their connections, and further generate natural language. The whole process involves a visual understanding module and a language generation module, which brings more challenges to the design of deep neural networks than other tasks. Neural Architecture Search (NAS) has shown its important role in a variety of image recognition tasks. Besides, RNN plays an essential role in the image captioning task. We introduce a AutoCaption method to better design the decoder module of the image captioning where we use the NAS to design the decoder module called AutoRNN automatically. We use the reinforcement learning method based on shared parameters for automatic design the AutoRNN efficiently. The search space of the AutoCaption includes connections between the layers and the operations in layers both, and it can make AutoRNN express more architectures. In particular, RNN is equivalent to a subset of our search space. Experiments on the MSCOCO datasets show that our AutoCaption model can achieve better performance than traditional hand-design methods. Our AutoCaption obtains the best published CIDEr performance of 135.8% on COCO Karpathy test split. When further using ensemble technology, CIDEr is boosted up to 139.5%.
To reduce the human efforts in neural network design, Neural Architecture Search (NAS) has been applied with remarkable success to various high-level vision tasks such as classification and semantic segmentation. The underlying idea for the NAS algor ithm is straightforward, namely, to enable the network the ability to choose among a set of operations (e.g., convolution with different filter sizes), one is able to find an optimal architecture that is better adapted to the problem at hand. However, so far the success of NAS has not been enjoyed by low-level geometric vision tasks such as stereo matching. This is partly due to the fact that state-of-the-art deep stereo matching networks, designed by humans, are already sheer in size. Directly applying the NAS to such massive structures is computationally prohibitive based on the currently available mainstream computing resources. In this paper, we propose the first end-to-end hierarchical NAS framework for deep stereo matching by incorporating task-specific human knowledge into the neural architecture search framework. Specifically, following the gold standard pipeline for deep stereo matching (i.e., feature extraction -- feature volume construction and dense matching), we optimize the architectures of the entire pipeline jointly. Extensive experiments show that our searched network outperforms all state-of-the-art deep stereo matching architectures and is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset with a substantial improvement on the size of the network and the speed of inference. The code is available at https://github.com/XuelianCheng/LEAStereo.
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design e fficient network architectures for low-level image restoration tasks. In this paper, we propose a memory-efficient hierarchical NAS HiNAS (HiNAS) and apply to two such tasks: image denoising and image super-resolution. HiNAS adopts gradient based search strategies and builds an flexible hierarchical search space, including inner search space and outer search space, which in charge of designing cell architectures and deciding cell widths, respectively. For inner search space, we propose layerwise architecture sharing strategy (LWAS), resulting in more flexible architectures and better performance. For outer search space, we propose cell sharing strategy to save memory, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient. With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K. Experimental results show that the architectures found by HiNAS have fewer parameters and enjoy a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods.
Low-light image enhancement plays very important roles in low-level vision field. Recent works have built a large variety of deep learning models to address this task. However, these approaches mostly rely on significant architecture engineering and suffer from high computational burden. In this paper, we propose a new method, named Retinex-inspired Unrolling with Architecture Search (RUAS), to construct lightweight yet effective enhancement network for low-light images in real-world scenario. Specifically, building upon Retinex rule, RUAS first establishes models to characterize the intrinsic underexposed structure of low-light images and unroll their optimization processes to construct our holistic propagation structure. Then by designing a cooperative reference-free learning strategy to discover low-light prior architectures from a compact search space, RUAS is able to obtain a top-performing image enhancement network, which is with fast speed and requires few computational resources. Extensive experiments verify the superiority of our RUAS framework against recently proposed state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا