ﻻ يوجد ملخص باللغة العربية
We consider the interplay of repulsive short-range and long-range interactions in the dynamics of dark solitons, as prototypical coherent nonlinear excitations in a trapped quasi-1D Bose gas. Upon examining the form of the ground state, both the existence of the solitary waves and their stability properties are explored and corroborated by direct numerical simulations. We find that single- and multiple-dark-soliton states can exist and are generically robust in the presence of long-range interactions. We analyze the modes of vibration of such excitations and find that their respective frequencies are significantly upshifted as the strength of the long-range interactions is increased. Indeed, we find that a prefactor of the long-range interactions considered comparable to the trap strength may upshift the dark soliton oscillation frequency by {it an order of magnitude}, in comparison to the well established one of $Omega/sqrt{2}$ in a trap of frequency $Omega$.
Coherent many-body quantum dynamics lies at the heart of quantum simulation and quantum computation. Both require coherent evolution in the exponentially large Hilbert space of an interacting many-body system. To date, trapped ions have defined the s
In this chapter we review recent results concerning localized and extended dissipative solutions of the discrete complex Ginzburg-Landau equation. In particular, we discuss discrete diffraction effects arising both from linear and nonlinear propertie
Alkaline-earth-metal atoms exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the 3P_0-3D_1-transition of the triplet manifold. In case of bosonic strontium, which we discuss here, this transition has
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g
The stability of dark solitons generated by a supersonic flow of a Bose-Einstein condensate past a concave corner (or a wedge) is studied. It is shown that solitons in the dispersive shock wave generated at the initial moment of time demonstrate a sn