ﻻ يوجد ملخص باللغة العربية
In this chapter we review recent results concerning localized and extended dissipative solutions of the discrete complex Ginzburg-Landau equation. In particular, we discuss discrete diffraction effects arising both from linear and nonlinear properties, the existence of self-localized dissipative solitons in the presence of cubic-quintic terms and modulational instability induced by saturable nonlinearities. Dynamical stability properties of localized and extended dissipative discrete solitons are also discussed.
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered. For parameters close to the vortex limit, and for a system of spiral waves with well-separated centres, laws of motion of the centres are
After a brief introduction to the complex Ginzburg-Landau equation, some of its important features in two space dimensions are reviewed. A comprehensive study of the various phases observed numerically in large systems over the whole parameter space
In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Lan
We explore the statistical behavior of the discrete nonlinear Schroedinger equation. We find a parameter region where the system evolves towards a state characterized by a finite density of breathers and a negative temperature. Such a state is metast
We consider the interplay of repulsive short-range and long-range interactions in the dynamics of dark solitons, as prototypical coherent nonlinear excitations in a trapped quasi-1D Bose gas. Upon examining the form of the ground state, both the exis