ﻻ يوجد ملخص باللغة العربية
Mobile edge computing (MEC) has recently become a prevailing technique to alleviate the intensive computation burden in Internet of Things (IoT) networks. However, the limited device battery capacity and stringent spectrum resource significantly restrict the data processing performance of MEC-enabled IoT networks. To address the two performance limitations, we consider in this paper an MEC-enabled IoT system with an energy harvesting (EH) wireless device (WD) which opportunistically accesses the licensed spectrum of an overlaid primary communication link for task offloading. We aim to maximize the long-term average sensing rate of the WD subject to quality of service (QoS) requirement of primary link, average power constraint of MEC server (MS) and data queue stability of both MS and WD. We formulate the problem as a multi-stage stochastic optimization and propose an online algorithm named PLySE that applies the perturbed Lyapunov optimization technique to decompose the original problem into per-slot deterministic optimization problems. For each per-slot problem, we derive the closed-form optimal solution of data sensing and processing control to facilitate low-complexity real-time implementation. Interestingly, our analysis finds that the optimal solution exhibits an threshold-based structure. Simulation results collaborate with our analysis and demonstrate more than 46.7% data sensing rate improvement of the proposed PLySE over representative benchmark methods.
Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices
The paper investigates the problem of maximizing expected sum throughput in a fading multiple access cognitive radio network when secondary user (SU) transmitters have energy harvesting capability, and perform cooperative spectrum sensing. We formula
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local compu
Mobile edge computing (MEC) integrated with multiple radio access technologies (RATs) is a promising technique for satisfying the growing low-latency computation demand of emerging intelligent internet of things (IoT) applications. Under the distribu
Mobile edge computing (MEC) provides computational services at the edge of networks by offloading tasks from user equipments (UEs). This letter employs an unmanned aerial vehicle (UAV) as the edge computing server to execute offloaded tasks from the