ﻻ يوجد ملخص باللغة العربية
Under reasonable assumptions, a group action on a module extends to the minimal free resolutions of the module. Explicit descriptions of these actions can lead to a better understanding of free resolutions by providing, for example, convenient expressions for their differentials or alternative characterizations of their Betti numbers. This article introduces an algorithm for computing characters of finite groups acting on minimal free resolutions of finitely generated graded modules over polynomial rings.
We present some partial results regarding subadditivity of maximal shifts in finite graded free resolutions.
Let $A$ be a semigroup whose only invertible element is 0. For an $A$-homogeneous ideal we discuss the notions of simple $i$-syzygies and simple minimal free resolutions of $R/I$. When $I$ is a lattice ideal, the simple 0-syzygies of $R/I$ are the bi
We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of gra
Minimal cellular resolutions of the edge ideals of cointerval hypergraphs are constructed. This class of d-uniform hypergraphs coincides with the complements of interval graphs (for the case d=2), and strictly contains the class of `strongly stable h
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com