ﻻ يوجد ملخص باللغة العربية
Let $A$ be a semigroup whose only invertible element is 0. For an $A$-homogeneous ideal we discuss the notions of simple $i$-syzygies and simple minimal free resolutions of $R/I$. When $I$ is a lattice ideal, the simple 0-syzygies of $R/I$ are the binomials in $I$. We show that for an appropriate choice of bases every $A$-homogeneous minimal free resolution of $R/I$ is simple. We introduce the gcd-complex $D_{gcd}(bf b)$ for a degree $mathbf{b}in A$. We show that the homology of $D_{gcd}(bf b)$ determines the $i$-Betti numbers of degree $bf b$. We discuss the notion of an indispensable complex of $R/I$. We show that the Koszul complex of a complete intersection lattice ideal $I$ is the indispensable resolution of $R/I$ when the $A$-degrees of the elements of the generating $R$-sequence are incomparable.
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an $mathbb{N}^s$-graded algebra $A$, we define and study its volume function $F_A:mathbb{N}_+^sto mathbb{R}$, which computes the asymptotics of the Hilbert
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com
Mustac{t}u{a} has given a conjecture for the graded Betti numbers in the minimal free resolution of the ideal of a general set of points on an irreducible projective algebraic variety. For surfaces in $mathbb P^3$ this conjecture has been proven for
Numerical invariants of a minimal free resolution of a module $M$ over a regular local ring $(R, )$ can be studied by taking advantage of the rich literature on the graded case. The key is to fix suitable $ $-stable filtrations ${mathbb M} $ of $M $