ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of a new implicit solver for a semiconductor model

260   0   0.0 ( 0 )
 نشر من قبل Victor DeCaria
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and analyze a new iterative solver for implicit discretizations of a simplified Boltzmann-Poisson system. The algorithm builds on recent work that incorporated a sweeping algorithm for the Vlasov-Poisson equations as part of nested inner-outer iterative solvers for the Boltzmann-Poisson equations. The new method eliminates the need for nesting and requires only one transport sweep per iteration. It arises as a new fixed-point formulation of the discretized system which we prove to be contractive for a given electric potential. We also derive an accelerator to improve the convergence rate for systems in the drift-diffusion regime. We numerically compare the efficiency of the new solver, with and without acceleration, with a recently developed nested iterative solver.



قيم البحث

اقرأ أيضاً

110 - Jianxun Yang , Chen Xu , Ye Zhang 2021
In this work, by introducing the seismic impedance tensor we propose a new Rayleigh wave dispersion function in a homogeneous and layered medium of the Earth, which provides an efficient way to compute the dispersion curve -- a relation between the f requencies and the phase velocities. With this newly established forward model, based on the Mixture Density Networks (MDN) we develop a machine learning based inversion approach, named as FW-MDN, for the problem of estimating the S-wave velocity from the dispersion curves. The method FW-MDN deals with the non-uniqueness issue encountered in studies that invert dispersion curves for crust and upper mantle models and attains a satisfactory performance on the dataset with various noise structure. Numerical simulations are performed to show that the FW-MDN possesses the characteristics of easy calculation, efficient computation, and high precision for the model characterization.
We perform the linear stability analysis for a new model for poromechanical processes with inertia (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes convected in the medium. We find parameter regions that lead to spatio-temporal instabilities of the coupled system. The mutual dependences between deformation and diffusive patterns are of substantial relevance in the study of morphoelastic changes in biomaterials. We provide a set of computational examples in 2D and 3D (related to brain mechanobiology) that can be used to form a better understanding on how, and up to which extent, the deformations of the porous structure dictate the generation and suppression of spatial patterning dynamics, also related to the onset of mechano-chemical waves.
We propose an efficient, accurate and robust implicit solver for the incompressible Navier-Stokes equations, based on a DG spatial discretization and on the TR-BDF2 method for time discretization. The effectiveness of the method is demonstrated in a number of classical benchmarks, which highlight its superior efficiency with respect to other widely used implicit approaches. The parallel implementation of the proposed method in the framework of the deal.II software package allows for accurate and efficient adaptive simulations in complex geometries, which makes the proposed solver attractive for large scale industrial applications.
Several different approaches are proposed for solving fully implicit discretizations of a simplified Boltzmann-Poisson system with a linear relaxation-type collision kernel. This system models the evolution of free electrons in semiconductor devices under a low-density assumption. At each implicit time step, the discretized system is formulated as a fixed-point problem, which can then be solved with a variety of methods. A key algorithmic component in all the approaches considered here is a recently developed sweeping algorithm for Vlasov-Poisson systems. A synthetic acceleration scheme has been implemented to accelerate the convergence of iterative solvers by using the solution to a drift-diffusion equation as a preconditioner. The performance of four iterative solvers and their accelerated variants has been compared on problems modeling semiconductor devices with various electron mean-free-path.
In this paper, an important discovery has been found for nonconforming immersed finite element (IFE) methods using integral-value degrees of freedom for solving elliptic interface problems. We show that those IFE methods can only achieve suboptimal c onvergence rates (i.e., $O(h^{1/2})$ in the $H^1$ norm and $O(h)$ in the $L^2$ norm) if the tangential derivative of the exact solution and the jump of the coefficient are not zero on the interface. A nontrivial counter example is also provided to support our theoretical analysis. To recover the optimal convergence rates, we develop a new nonconforming IFE method with additional terms locally on interface edges. The unisolvence of IFE basis functions is proved on arbitrary triangles. Furthermore, we derive the optimal approximation capabilities of both the Crouzeix-Raviart and the rotated-$Q_1$ IFE spaces for interface problems with variable coefficients via a unified approach different from multipoint Taylor expansions. Finally, optimal error estimates in both $H^1$- and $L^2$- norms are proved and confirmed with numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا