ﻻ يوجد ملخص باللغة العربية
The EUV (100-912 {AA}) is a spectral region notoriously difficult to observe due to attenuation by neutral hydrogen gas in the interstellar medium. Despite this, hundreds to thousands of nearby stars of different spectral types and magnetic activity levels are accessible in the EUV range. The EUV probes interesting and complicated regions in the stellar atmosphere like the lower corona and transition region that are inaccessible from other spectral regions. In this white paper we describe how direct EUV observations, which require a dedicated grazing-incidence observatory, cannot yet be accurately substituted with models and theory. Exploring EUV emission from cool dwarf stars in the time domain can make a major contribution to understanding stellar outer atmospheres and magnetism, and offers the clearest path toward detecting coronal mass ejections on stars other than the Sun.
We present results from a near infrared survey of the He I line (10830 Angstrom) in cool dwarf stars taken with the PHOENIX spectrograph at the 4-m Mayall telescope at Kitt Peak National Observatory. Spectral synthesis of this region reproduces some
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the
Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra o
We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hyp
The recent years have brought great advances in our knowledge of magnetic fields in cool giant and supergiant stars. For example, starspots have been directly imaged on the surface of an active giant star using optical interferometry, and magnetic fi