ﻻ يوجد ملخص باللغة العربية
Video represents the majority of internet traffic today leading to a continuous technological arms race between generating higher quality content, transmitting larger file sizes and supporting network infrastructure. Adding to this is the recent COVID-19 pandemic fueled surge in the use of video conferencing tools. Since videos take up substantial bandwidth (~100 Kbps to few Mbps), improved video compression can have a substantial impact on network performance for live and pre-recorded content, providing broader access to multimedia content worldwide. In this work, we present a novel video compression pipeline, called Txt2Vid, which substantially reduces data transmission rates by compressing webcam videos (talking-head videos) to a text transcript. The text is transmitted and decoded into a realistic reconstruction of the original video using recent advances in deep learning based voice cloning and lip syncing models. Our generative pipeline achieves two to three orders of magnitude reduction in the bitrate as compared to the standard audio-video codecs (encoders-decoders), while maintaining equivalent Quality-of-Experience based on a subjective evaluation by users (n=242) in an online study. The code for this work is available at https://github.com/tpulkit/txt2vid.git.
Editing talking-head video to change the speech content or to remove filler words is challenging. We propose a novel method to edit talking-head video based on its transcript to produce a realistic output video in which the dialogue of the speaker ha
The diversity of video delivery pipeline poses a grand challenge to the evaluation of adaptive bitrate (ABR) streaming algorithms and objective quality-of-experience (QoE) models. Here we introduce so-far the largest subject-rated database of its kin
In this paper, we propose a novel text-based talking-head video generation framework that synthesizes high-fidelity facial expressions and head motions in accordance with contextual sentiments as well as speech rhythm and pauses. To be specific, our
When people deliver a speech, they naturally move heads, and this rhythmic head motion conveys prosodic information. However, generating a lip-synced video while moving head naturally is challenging. While remarkably successful, existing works either
In this paper, we propose a new deep image compression framework called Complexity and Bitrate Adaptive Network (CBANet), which aims to learn one single network to support variable bitrate coding under different computational complexity constraints.