ﻻ يوجد ملخص باللغة العربية
We study the problem of recovering a collection of $n$ numbers from the evaluation of $m$ power sums. This yields a system of polynomial equations, which can be underconstrained ($m < n$), square ($m = n$), or overconstrained ($m > n$). Fibers and images of power sum maps are explored in all three regimes, and in settings that range from complex and projective to real and positive. This involves surprising deviations from the Bezout bound, and the recovery of vectors from length measurements by $p$-norms.
In this article, we present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of finite symmetries. We compute the tropical Grassmannian TGr$_0(3,8)$, and show that it refines the $15$-dimensional
In this paper we study sums of powers of affine functions in (mostly) one variable. Although quite simple, this model is a generalization of two well-studied models: Waring decomposition and sparsest shift. For these three models there are natural ex
Consider an irreducible finite Coxeter system. We show that for any nonnegative integer n the sum of the nth powers of the Coxeter exponents can be written uniformly as a polynomial in four parameters: h (the Coxeter number), r (the rank), and two further parameters.
In the present article, we use Robbas method to give an estimation of the Newton polygon for the L function on torus.
We define the concept of Tschirnhaus-Weierstrass curve, named after the Weierstrass form of an elliptic curve and Tschirnhaus transformations. Every pointed curve has a Tschirnhaus-Weierstrass form, and this representation is unique up to a scaling o