ﻻ يوجد ملخص باللغة العربية
We define an involution on the space of compact tempered unipotent representations of inner twists of a split simple $p$-adic group $G$ and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztigs nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence of the conjecture, including proofs for $mathsf{SL}_n$ and $mathsf{PGL}_n$.
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl
In [Frobenius1896] it was shown that many important properties of a finite group could be examined using formulas involving the character ratios of group elements, i.e., the trace of the element acting in a given irreducible representation, divided b
We begin this paper by reviewing the Langlands correspondence for unipotent representations of the exceptional group of type $G_2$ over a $p$-adic field $F$ and present it in an explicit form. Then we compute all ABV-packets, as defined in [CFM+21] f
We show that Fourier coefficients of automorphic forms attached to minimal or next-to-minimal automorphic representations of ${mathrm{SL}}_n(mathbb{A})$ are completely determined by certain highly degenerate Whittaker coefficients. We give an explici
With the aid of the exponentiation functor and Fourier transform we introduce a class of modules $T(g,V,S)$ of $mathfrak{sl} (n+1)$ of mixed tensor type. By varying the polynomial $g$, the $mathfrak{gl}(n)$-module $V$, and the set $S$, we obtain impo