ﻻ يوجد ملخص باللغة العربية
Recent work has made significant progress in helping users to automate single data preparation steps, such as string-transformations and table-manipulation operators (e.g., Join, GroupBy, Pivot, etc.). We in this work propose to automate multiple such steps end-to-end, by synthesizing complex data pipelines with both string transformations and table-manipulation operators. We propose a novel by-target paradigm that allows users to easily specify the desired pipeline, which is a significant departure from the traditional by-example paradigm. Using by-target, users would provide input tables (e.g., csv or json files), and point us to a target table (e.g., an existing database table or BI dashboard) to demonstrate how the output from the desired pipeline would schematically look like. While the problem is seemingly underspecified, our unique insight is that implicit table constraints such as FDs and keys can be exploited to significantly constrain the space to make the problem tractable. We develop an Auto-Pipeline system that learns to synthesize pipelines using reinforcement learning and search. Experiments on large numbers of real pipelines crawled from GitHub suggest that Auto-Pipeline can successfully synthesize 60-70% of these complex pipelines with up to 10 steps.
Similar trajectory search is a fundamental problem and has been well studied over the past two decades. However, the similar subtrajectory search (SimSub) problem, aiming to return a portion of a trajectory (i.e., a subtrajectory) which is the most s
Machine learning (ML) is now commonplace, powering data-driven applications in various organizations. Unlike the traditional perception of ML in research, ML production pipelines are complex, with many interlocking analytical components beyond traini
Targets search and detection encompasses a variety of decision problems such as coverage, surveillance, search, observing and pursuit-evasion along with others. In this paper we develop a multi-agent deep reinforcement learning (MADRL) method to coor
Complex data pipelines are increasingly common in diverse applications such as BI reporting and ML modeling. These pipelines often recur regularly (e.g., daily or weekly), as BI reports need to be refreshed, and ML models need to be retrained. Howeve
This paper proposes a composable Just in Time Architecture for Data Science (DS) Pipelines named JITA-4DS and associated resource management techniques for configuring disaggregated data centers (DCs). DCs under our approach are composable based on v