ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Online Convex Optimization

111   0   0.0 ( 0 )
 نشر من قبل Juncheng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider online convex optimization (OCO) over a heterogeneous network with communication delay, where multiple workers together with a master execute a sequence of decisions to minimize the accumulation of time-varying global costs. The local data may not be independent or identically distributed, and the global cost functions may not be locally separable. Due to communication delay, neither the master nor the workers have in-time information about the current global cost function. We propose a new algorithm, termed Hierarchical OCO (HiOCO), which takes full advantage of the network heterogeneity in information timeliness and computation capacity to enable multi-step gradient descent at both the workers and the master. We analyze the impacts of the unique hierarchical architecture, multi-slot delay, and gradient estimation error to derive upper bounds on the dynamic regret of HiOCO, which measures the gap of costs between HiOCO and an offline globally optimal performance benchmark.



قيم البحث

اقرأ أيضاً

105 - Amir Adler , Mati Wax 2017
We present novel convex-optimization-based solutions to the problem of blind beamforming of constant modulus signals, and to the related problem of linearly constrained blind beamforming of constant modulus signals. These solutions ensure global opti mality and are parameter free, namely, do not contain any tuneable parameters and do not require any a-priori parameter settings. The performance of these solutions, as demonstrated by simulated data, is superior to existing methods.
In this work, we propose a new learning framework for optimising transmission strategies when irregular repetition slotted ALOHA (IRSA) MAC protocol is considered. We cast the online optimisation of the MAC protocol design as a multi-arm bandit probl em that exploits the IRSA structure in the learning framework. Our learning algorithm quickly learns the optimal transmission strategy, leading to higher rate of successfully received packets with respect to baseline transmission optimizations.
We study the problem of reconstructing a block-sparse signal from compressively sampled measurements. In certain applications, in addition to the inherent block-sparse structure of the signal, some prior information about the block support, i.e. bloc ks containing non-zero elements, might be available. Although many block-sparse recovery algorithms have been investigated in Bayesian framework, it is still unclear how to incorporate the information about the probability of occurrence into regularization-based block-sparse recovery in an optimal sense. In this work, we bridge between these fields by the aid of a new concept in conic integral geometry. Specifically, we solve a weighted optimization problem when the prior distribution about the block support is available. Moreover, we obtain the unique weights that minimize the expected required number of measurements. Our simulations on both synthetic and real data confirm that these weights considerably decrease the required sample complexity.
This work considers two popular minimization problems: (i) the minimization of a general convex function $f(mathbf{X})$ with the domain being positive semi-definite matrices; (ii) the minimization of a general convex function $f(mathbf{X})$ regulariz ed by the matrix nuclear norm $|mathbf{X}|_*$ with the domain being general matrices. Despite their optimal statistical performance in the literature, these two optimization problems have a high computational complexity even when solved using tailored fast convex solvers. To develop faster and more scalable algorithms, we follow the proposal of Burer and Monteiro to factor the low-rank variable $mathbf{X} = mathbf{U}mathbf{U}^top $ (for semi-definite matrices) or $mathbf{X}=mathbf{U}mathbf{V}^top $ (for general matrices) and also replace the nuclear norm $|mathbf{X}|_*$ with $(|mathbf{U}|_F^2+|mathbf{V}|_F^2)/2$. In spite of the non-convexity of the resulting factored formulations, we prove that each critical point either corresponds to the global optimum of the original convex problems or is a strict saddle where the Hessian matrix has a strictly negative eigenvalue. Such a nice geometric structure of the factored formulations allows many local search algorithms to find a global optimizer even with random initializations.
79 - Jiaming Xu , Kuang Xu , Dana Yang 2021
Online convex optimization is a framework where a learner sequentially queries an external data source in order to arrive at the optimal solution of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversary that observe the submitted queries. In this paper, we study how to optimally obfuscate the learners queries in first-order online convex optimization, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary. We consider two formulations of learner privacy: a Bayesian formulation in which the convex function is drawn randomly, and a minimax formulation in which the function is fixed and the adversarys probability of error is measured with respect to a minimax criterion. We show that, if the learner wants to ensure the probability of accurate prediction by the adversary be kept below $1/L$, then the overhead in query complexity is additive in $L$ in the minimax formulation, but multiplicative in $L$ in the Bayesian formulation. Compared to existing learner-private sequential learning models with binary feedback, our results apply to the significantly richer family of general convex functions with full-gradient feedback. Our proofs are largely enabled by tools from the theory of Dirichlet processes, as well as more sophisticated lines of analysis aimed at measuring the amount of information leakage under a full-gradient oracle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا