ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-training Converts Weak Learners to Strong Learners in Mixture Models

118   0   0.0 ( 0 )
 نشر من قبل Quanquan Gu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a binary classification problem when the data comes from a mixture of two rotationally symmetric distributions satisfying concentration and anti-concentration properties enjoyed by log-concave distributions among others. We show that there exists a universal constant $C_{mathrm{err}}>0$ such that if a pseudolabeler $boldsymbol{beta}_{mathrm{pl}}$ can achieve classification error at most $C_{mathrm{err}}$, then for any $varepsilon>0$, an iterative self-training algorithm initialized at $boldsymbol{beta}_0 := boldsymbol{beta}_{mathrm{pl}}$ using pseudolabels $hat y = mathrm{sgn}(langle boldsymbol{beta}_t, mathbf{x}rangle)$ and using at most $tilde O(d/varepsilon^2)$ unlabeled examples suffices to learn the Bayes-optimal classifier up to $varepsilon$ error, where $d$ is the ambient dimension. That is, self-training converts weak learners to strong learners using only unlabeled examples. We additionally show that by running gradient descent on the logistic loss one can obtain a pseudolabeler $boldsymbol{beta}_{mathrm{pl}}$ with classification error $C_{mathrm{err}}$ using only $O(d)$ labeled examples (i.e., independent of $varepsilon$). Together our results imply that mixture models can be learned to within $varepsilon$ of the Bayes-optimal accuracy using at most $O(d)$ labeled examples and $tilde O(d/varepsilon^2)$ unlabeled examples by way of a semi-supervised self-training algorithm.



قيم البحث

اقرأ أيضاً

One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contra st to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels ($le$13 labeled images per class) using ResNet-50, a $10times$ improvement in label efficiency over the previous state-of-the-art. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels.
The success of minimax learning problems of generative adversarial networks (GANs) has been observed to depend on the minimax optimization algorithm used for their training. This dependence is commonly attributed to the convergence speed and robustne ss properties of the underlying optimization algorithm. In this paper, we show that the optimization algorithm also plays a key role in the generalization performance of the trained minimax model. To this end, we analyze the generalization properties of standard gradient descent ascent (GDA) and proximal point method (PPM) algorithms through the lens of algorithmic stability under both convex concave and non-convex non-concave minimax settings. While the GDA algorithm is not guaranteed to have a vanishing excess risk in convex concave problems, we show the PPM algorithm enjoys a bounded excess risk in the same setup. For non-convex non-concave problems, we compare the generalization performance of stochastic GDA and GDmax algorithms where the latter fully solves the maximization subproblem at every iteration. Our generalization analysis suggests the superiority of GDA provided that the minimization and maximization subproblems are solved simultaneously with similar learning rates. We discuss several numerical results indicating the role of optimization algorithms in the generalization of the learned minimax models.
A meta-model is trained on a distribution of similar tasks such that it learns an algorithm that can quickly adapt to a novel task with only a handful of labeled examples. Most of current meta-learning methods assume that the meta-training set consis ts of relevant tasks sampled from a single distribution. In practice, however, a new task is often out of the task distribution, yielding a performance degradation. One way to tackle this problem is to construct an ensemble of meta-learners such that each meta-learner is trained on different task distribution. In this paper we present a method for constructing a mixture of meta-learners (MxML), where mixing parameters are determined by the weight prediction network (WPN) optimized to improve the few-shot classification performance. Experiments on various datasets demonstrate that MxML significantly outperforms state-of-the-art meta-learners, or their naive ensemble in the case of out-of-distribution as well as in-distribution tasks.
Meta-Learning (ML) has proven to be a useful tool for training Few-Shot Learning (FSL) algorithms by exposure to batches of tasks sampled from a meta-dataset. However, the standard training procedure overlooks the dynamic nature of the real-world whe re object classes are likely to occur at different frequencies. While it is generally understood that imbalanced tasks harm the performance of supervised methods, there is no significant research examining the impact of imbalanced meta-datasets on the FSL evaluation task. This study exposes the magnitude and extent of this problem. Our results show that ML methods are more robust against meta-dataset imbalance than imbalance at the task-level with a similar imbalance ratio ($rho<20$), with the effect holding even in long-tail datasets under a larger imbalance ($rho=65$). Overall, these results highlight an implicit strength of ML algorithms, capable of learning generalizable features under dataset imbalance and domain-shift. The code to reproduce the experiments is released under an open-source license.
Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-speci fic fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3s few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا