ﻻ يوجد ملخص باللغة العربية
Literary artefacts are generally indexed and searched based on titles, meta data and keywords over the years. This searching and indexing works well when user/reader already knows about that particular creative textual artefact or document. This indexing and search hardly takes into account interest and emotional makeup of readers and its mapping to books. When a person is looking for a literary textual artefact, he/she might be looking for not only information but also to seek the joy of reading. In case of literary artefacts, progression of emotions across the key events could prove to be the key for indexing and searching. In this paper, we establish clusters among literary artefacts based on computational relationships among sentiment progressions using intelligent text analysis. We have created a database of 1076 English titles + 20 Marathi titles and also used database http://www.cs.cmu.edu/~dbamman/booksummaries.html with 16559 titles and their summaries. We have proposed Sentiment Progression based Indexing for searching and recommending books. This can be used to create personalized clusters of book titles of interest to readers. The analysis clearly suggests better searching and indexing when we are targeting book lovers looking for a particular type of book or creative artefact. This indexing and searching can find many real-life applications for recommending books.
Existing video indexing and retrieval methods on popular web-based multimedia sharing websites are based on user-provided sparse tagging. This paper proposes a very specific way of searching for video clips, based on the content of the video. We pres
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask appro
We analyzed historical and literary documents in Chinese to gain insights into research issues, and overview our studies which utilized four different sources of text materials in this paper. We investigated the history of concepts and transliterated
Literary reading is an important activity for individuals and choosing to read a book can be a long time commitment, making book choice an important task for book lovers and public library users. In this paper we present an hybrid recommendation syst
One of the distinctive features of Information Retrieval systems comparing to Database Management systems, is that they offer better compression for posting lists, resulting in better I/O performance and thus faster query evaluation. In this paper, w