ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph and hypergraph colouring via nibble methods: A survey

153   0   0.0 ( 0 )
 نشر من قبل Thomas Kelly
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a survey of methods, results, and open problems on graph and hypergraph colourings, with a particular emphasis on semi-random `nibble methods. We also give a detailed sketch of some aspects of the recent proof of the ErdH{o}s-Faber-Lov{a}sz conjecture.



قيم البحث

اقرأ أيضاً

Given $varepsilon>0$, there exists $f_0$ such that, if $f_0 le f le Delta^2+1$, then for any graph $G$ on $n$ vertices of maximum degree $Delta$ in which the neighbourhood of every vertex in $G$ spans at most $Delta^2/f$ edges, (i) an independent set of $G$ drawn uniformly at random has at least $(1/2-varepsilon)(n/Delta)log f$ vertices in expectation, and (ii) the fractional chromatic number of $G$ is at most $(2+varepsilon)Delta/log f$. These bounds cannot in general be improved by more than a factor $2$ asymptotically. One may view these as strong
166 - Aditya Potukuchi 2019
Let $mathcal{H}$ be a $t$-regular hypergraph on $n$ vertices and $m$ edges. Let $M$ be the $m times n$ incidence matrix of $mathcal{H}$ and let us denote $lambda =max_{v perp overline{1},|v| = 1}|Mv|$. We show that the discrepancy of $mathcal{H}$ is $O(sqrt{t} + lambda)$. As a corollary, this gives us that for every $t$, the discrepancy of a random $t$-regular hypergraph with $n$ vertices and $m geq n$ edges is almost surely $O(sqrt{t})$ as $n$ grows. The proof also gives a polynomial time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.
Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the affirmative for triangle-free graphs.
108 - Aditya Potukuchi 2018
We study hypergraph discrepancy in two closely related random models of hypergraphs on $n$ vertices and $m$ hyperedges. The first model, $mathcal{H}_1$, is when every vertex is present in exactly $t$ randomly chosen hyperedges. The premise of this is closely tied to, and motivated by the Beck-Fiala conjecture. The second, perhaps more natural model, $mathcal{H}_2$, is when the entries of the $m times n$ incidence matrix is sampled in an i.i.d. fashion, each with probability $p$. We prove the following: 1. In $mathcal{H}_1$, when $log^{10}n ll t ll sqrt{n}$, and $m = n$, we show that the discrepancy of the hypergraph is almost surely at most $O(sqrt{t})$. This improves upon a result of Ezra and Lovett for this range of parameters. 2. In $mathcal{H}_2$, when $p= frac{1}{2}$, and $n = Omega(m log m)$, we show that the discrepancy is almost surely at most $1$. This answers an open problem of Hoberg and Rothvoss.
We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا