ﻻ يوجد ملخص باللغة العربية
We study experimentally and theoretically the temperature dependence of transverse magnetic routing of light emission from hybrid plasmonic-semiconductor quantum well structures where the exciton emission from the quantum well is routed into surface plasmon polaritons propagating along a nearby semiconductor-metal interface. In II-VI and III-V direct band semiconductors the magnitude of routing is governed by the circular polarization of exciton optical transitions, that is induced by a magnetic field. For structures comprising a (Cd,Mn)Te/(Cd,Mg)Te diluted magnetic semiconductor quantum well we observe a strong directionality of the emission up to 15% at low temperature of 20 K and magnetic field of 485 mT due to giant Zeeman splitting of holes mediated via the strong exchange interaction with Mn$^{2+}$ ions. For increasing temperatures towards room-temperature the magnetic susceptibility decreases and the directionality strongly decreases to 4% at T = 45 K. We also propose an alternative design based on a non-magnetic (In,Ga)As/(In,Al)As quantum well structure, suitable for higher temperatures. According to our calculations, such structure can demonstrate emission directionality up to 5% for temperatures below 200 K and moderate magnetic fields of 1 T.
Alternating layers of granular Iron (Fe) and Titanium dioxide (TiO$_{2-delta}$) were deposited on (100) Lanthanum aluminate (LaAlO$_3$) substrates in low oxygen chamber pressure using a controlled pulsed laser ablation deposition technique. The total
Magneto-optical phenomena such as the Faraday and Kerr effects play a decisive role for establishing control over polarization and intensity of optical fields propagating through a medium. Intensity effects where the direction of light emission depen
Hybrid nanophotonics based on metal-dielectric nanostructures unifies the advantages of plasmonics and all-dielectric nanophotonics providing strong localization of light, magnetic optical response and specifically designed scattering properties. Her
Room temperature strong coupling of WS_2 monolayer exciton transitions to metallic Fabry-Perot and plasmonic optical cavities is demonstrated. A Rabi splitting of 101 meV is observed for the Fabry-Perot cavity, more than double those reported to date
We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 $mu_B$ per carbon. The theoretical prediction was