ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic compact stars in higher-order curvature theory

70   0   0.0 ( 0 )
 نشر من قبل Gamal G.L. Nashed
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the f(R) type. We shall derive the non--vacuum field equations of the higher-order curvature theory, without assuming any specific form of the $mathrm{f(R)}$ theory, specifying the analysis for a spherically symmetric spacetime with two unknown functions. We obtain a system of highly non-linear differential equations, which consists of four differential equations with six unknown functions. To solve such a system, we assume a specific form of metric potentials, using the Krori-Barua ansatz. We successfully solve the system of differential equations, and we derive all the components of the energy-momentum tensor. Moreover, we derive the non-trivial general form of $mathrm{f(R)}$ that may generate such solutions and calculate the dynamic Ricci scalar of the anisotropic star. Accordingly, we calculate the asymptotic form of the function $mathrm{f(R)}$, which is a polynomial function. We match the derived interior solution with the exterior one, which was derived in cite{Nashed:2019tuk}, with the latter also resulting in a non-trivial form of the Ricci scalar. Notably but rather expected, the exterior solution differs from the Schwarzschild one in the context of general relativity. The matching procedure will eventually relate two constants with the mass and radius of the compact stellar object. We list the necessary conditions that any compact anisotropic star must satisfy and explain in detail that our model bypasses all of these conditions for a special compact star $textit {Her X--1 }$, which has an estimated mass and radius textit {(mass = 0.85 $pm 0.15M_{circledcirc}$,, and, ,radius $= 8.1 pm 0.41$km)}.



قيم البحث

اقرأ أيضاً

84 - G.G.L. Nashed 2021
In this paper, we consider the mimetic gravitational theory to derive a novel category of anisotropic star models. To end and to put the resulting differential equations into a closed system, the form of the metric potential $g_{rr}$ as used by Tolma n (Tolman 1939) is assumed as well as a linear form of the equation-of-state. The resulting energy-momentum components, energy-density, and radial and tangential pressures contain five constants; three of these are determined through the junction condition, matching the interior with the exterior Schwarzschild solution the fourth is constrained by the vanishing of the radial pressure on the boundary and the fifth is constrained by a real compact star. The physical acceptability of our model is tested using the data of the pulsar 4U 1820-30. The stability of this model is evaluated using the Tolman-Oppenheimer-Volkoff equation and the adiabatic index and it is shown to be stable. Finally, our model is challenged with other compact stars demonstrating that it is consistent with those stars.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.
We study a metric cubic gravity theory considering odd-parity modes of linear inhomogeneous perturbations on a spatially homogeneous Bianchi type I manifold close to the isotropic de Sitter spacetime. We show that in the regime of small anisotropy, t he theory possesses new degrees of freedom compared to General Relativity, whose kinetic energy vanishes in the limit of exact isotropy. From the mass dispersion relation we show that such theory always possesses at least one ghost mode as well as a very short-time-scale (compared to the Hubble time) classical tachyonic (or ghost-tachyonic) instability. In order to confirm our analytic analysis, we also solve the equations of motion numerically and we find that this instability is developed well before a single e-fold of the scale factor. This shows that this gravity theory, as it is, cannot be used to construct viable cosmological models.
Four-dimensional black hole solutions generated by the low energy string effective action are investigated outside and inside the event horizon. A restriction for a minimal black hole size is obtained in the frame of the model discussed. Intersection s, turning points and other singular points of the solution are investigated. It is shown that the position and the behavior of these particular points are definded by various kinds of zeros of the main system determinant. Some new aspects of the $r_s$ singularity are discussed.
In the present work we investigate the Newtonian limit of higher-derivative gravity theories with more than four derivatives in the action, including the non-analytic logarithmic terms resulting from one-loop quantum corrections. The first part of th e paper deals with the occurrence of curvature singularities of the metric in the classical models. It is shown that in the case of local theories, even though the curvature scalars of the metric are regular, invariants involving derivatives of curvatures can still diverge. Indeed, we prove that if the action contains $2n+6$ derivatives of the metric in both the scalar and the spin-2 sectors, then all the curvature-derivative invariants with at most $2n$ covariant derivatives of the curvatures are regular, while there exist scalars with $2n+2$ derivatives that are singular. The regularity of all these invariants can be achieved in some classes of nonlocal gravity theories. In the second part of the paper, we show that the leading logarithmic quantum corrections do not change the regularity of the Newtonian limit. Finally, we also consider the infrared limit of these solutions and verify the universality of the leading quantum correction to the potential in all the theories investigated in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا