ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Domain Active Learning: A Comparative Study

70   0   0.0 ( 0 )
 نشر من قبل Rui He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Building classifiers on multiple domains is a practical problem in the real life. Instead of building classifiers one by one, multi-domain learning (MDL) simultaneously builds classifiers on all the domains. MDL utilizes the information shared among the domains to improve the performance. As a supervised learning problem, the labeling effort is still high in MDL problems. Usually, this high labeling cost issue could be relieved by using active learning. Thus, it is natural to utilize active learning to reduce the labeling effort in MDL, and we refer this setting as multi-domain active learning (MDAL). However, there are only few works which are built on this setting. And when the researchers have to face this problem, there is no off-the-shelf solution. Under this circumstance, combining the current multi-domain learning models and single-domain active learning strategies might be a preliminary solution for MDAL problem. To find out the potential of this preliminary solution, a comparative study over 5 models and 4 active learning strategies is made in this paper. To the best of our knowledge, this is the first work provides the formal definition of MDAL. Besides, this is the first comparative work for MDAL problem. From the results, the Multinomial Adversarial Networks (MAN) model with a simple best vs second best (BvSB) uncertainty strategy shows its superiority in most cases. We take this combination as our off-the-shelf recommendation for the MDAL problem.

قيم البحث

اقرأ أيضاً

Automatic credit scoring, which assesses the probability of default by loan applicants, plays a vital role in peer-to-peer lending platforms to reduce the risk of lenders. Although it has been demonstrated that dynamic selection techniques are effect ive for classification tasks, the performance of these techniques for credit scoring has not yet been determined. This study attempts to benchmark different dynamic selection approaches systematically for ensemble learning models to accurately estimate the credit scoring task on a large and high-dimensional real-life credit scoring data set. The results of this study indicate that dynamic selection techniques are able to boost the performance of ensemble models, especially in imbalanced training environments.
Predicting the evolution of the brain network, also called connectome, by foreseeing changes in the connectivity weights linking pairs of anatomical regions makes it possible to spot connectivity-related neurological disorders in earlier stages and d etect the development of potential connectomic anomalies. Remarkably, such a challenging prediction problem remains least explored in the predictive connectomics literature. It is a known fact that machine learning (ML) methods have proven their predictive abilities in a wide variety of computer vision problems. However, ML techniques specifically tailored for the prediction of brain connectivity evolution trajectory from a single timepoint are almost absent. To fill this gap, we organized a Kaggle competition where 20 competing teams designed advanced machine learning pipelines for predicting the brain connectivity evolution from a single timepoint. The competing teams developed their ML pipelines with a combination of data pre-processing, dimensionality reduction, and learning methods. Utilizing an inclusive evaluation approach, we ranked the methods based on two complementary evaluation metrics (mean absolute error (MAE) and Pearson Correlation Coefficient (PCC)) and their performances using different training and testing data perturbation strategies (single random split and cross-validation). The final rank was calculated using the rank product for each competing team across all evaluation measures and validation strategies. In support of open science, the developed 20 ML pipelines along with the connectomic dataset are made available on GitHub. The outcomes of this competition are anticipated to lead to the further development of predictive models that can foresee the evolution of brain connectivity over time, as well as other types of networks (e.g., genetic networks).
When dealing with multi-class classification problems, it is common practice to build a model consisting of a series of binary classifiers using a learning paradigm which dictates how the classifiers are built and combined to discriminate between the individual classes. As new data enters the system and the model needs updating, these models would often need to be retrained from scratch. This work proposes three learning paradigms which allow trained models to be updated without the need of retraining from scratch. A comparative analysis is performed to evaluate them against a baseline. Results show that the proposed paradigms are faster than the baseline at updating, with two of them being faster at training from scratch as well, especially on larger datasets, while retaining a comparable classification performance.
Domain Adaptation aiming to learn a transferable feature between different but related domains has been well investigated and has shown excellent empirical performances. Previous works mainly focused on matching the marginal feature distributions usi ng the adversarial training methods while assuming the conditional relations between the source and target domain remained unchanged, $i.e.$, ignoring the conditional shift problem. However, recent works have shown that such a conditional shift problem exists and can hinder the adaptation process. To address this issue, we have to leverage labelled data from the target domain, but collecting labelled data can be quite expensive and time-consuming. To this end, we introduce a discriminative active learning approach for domain adaptation to reduce the efforts of data annotation. Specifically, we propose three-stage active adversarial training of neural networks: invariant feature space learning (first stage), uncertainty and diversity criteria and their trade-off for query strategy (second stage) and re-training with queried target labels (third stage). Empirical comparisons with existing domain adaptation methods using four benchmark datasets demonstrate the effectiveness of the proposed approach.
Scientific Computing relies on executing computer algorithms coded in some programming languages. Given a particular available hardware, algorithms speed is a crucial factor. There are many scientific computing environments used to code such algorith ms. Matlab is one of the most tremendously successful and widespread scientific computing environments that is rich of toolboxes, libraries, and data visualization tools. OpenCV is a (C++)-based library written primarily for Computer Vision and its related areas. This paper presents a comparative study using 20 different real datasets to compare the speed of Matlab and OpenCV for some Machine Learning algorithms. Although Matlab is more convenient in developing and data presentation, OpenCV is much faster in execution, where the speed ratio reaches more than 80 in some cases. The best of two worlds can be achieved by exploring using Matlab or similar environments to select the most successful algorithm; then, implementing the selected algorithm using OpenCV or similar environments to gain a speed factor.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا