ﻻ يوجد ملخص باللغة العربية
We give a new proof of Kollars conjecture on the pushforward of the dualizing sheaf twisted by a variation of Hodge structure. This conjecture was settled by M. Saito via mixed Hodge modules and has applications in the investigation of Albanese maps. Our technique is the $L^2$-method and we give a concrete construction and proofs of the conjecture. The $L^2$ point of view allows us to generalize Kollars conjecture to the context of non-abelian Hodge theory.
For a projective variety $X$ defined over a non-Archimedean complete non-trivially valued field $k$, and a semipositive metrized line bundle $(L, phi)$ over it, we establish a metric extension result for sections of $L^{otimes n}$ from a sub-variety
A conic bundle is a contraction $Xto Z$ between normal varieties of relative dimension $1$ such that $-K_X$ is relatively ample. We prove a conjecture of Shokurov which predicts that, if $Xto Z$ is a conic bundle such that $X$ has canonical singulari
The paper considers the Dirac operator on a Riemann surface coupled to a symplectic holomorphic vector bundle W. Each spinor in the null-space generates through the moment map a Higgs bundle, and varying W one obtains a holomorphic Lagrangian subvari
We treat Kollars injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollar type cohomology injectivity theorems. Our main theorem is formulated for a compact Kahler
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0