نحن نعالج مبرهنة كولار للحقن من النظرة التحليلية (أو الهندسة التفاضلية). بشكل أكثر دقة، نقدم شرطا خطوط الإنحناء الذي يشير إلى أحكام كولار للحقن الشعبية. يتم تصريح أساسنا لهذا المبرهنة للمخلوق الكاهلي المضغوط، ولكن دليلنا يستخدم مساحة الأشكال الهارمونية على مجموعة زاريسكي مناسبة مع قياس كاهلي مكتمل. لا نحتاج إلى الحيل التغطية، ولا التجزئة، ولا سلسلة اسكترال ليراي.
We treat Kollars injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollar type cohomology injectivity theorems. Our main theorem is formulated for a compact Kahler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete Kahler metric. We need neither covering tricks, desingularizations, nor Lerays spectral sequence.
We give a new proof of Kollars conjecture on the pushforward of the dualizing sheaf twisted by a variation of Hodge structure. This conjecture was settled by M. Saito via mixed Hodge modules and has applications in the investigation of Albanese maps.
We study linear projections on Pluecker space whose restriction to the Grassmannian is a non-trivial branched cover. When an automorphism of the Grassmannian preserves the fibers, we show that the Grassmannian is necessarily of m-dimensional linear s
Transcendental Brauer elements are notoriously difficult to compute. Work of Wittenberg, and later, Ieronymou, gives a method for computing 2-torsion transcendental classes on surfaces that have a genus 1 fibration with rational 2-torsion in the Jaco
Inspired by a theorem of Bhatt-Morrow-Scholze, we develop a stacky approach to crystals and isocrystals on Frobenius-smooth schemes over F_p . This class of schemes goes back to Berthelot-Messing and contains all smooth schemes over perfect fields of
A mixture of an historical article, and of a survey of recent developments, containing also a couple of new results.