ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced calculations of x-ray spectroscopies with FEFF10 and Corvus

419   0   0.0 ( 0 )
 نشر من قبل Joshua Kas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The real-space Greens function code FEFF has been extensively developed and used for calculations of x-ray and related spectra, including x-ray absorption (XAS), x-ray emission (XES), inelastic x-ray scattering, and electron energy loss spectra (EELS). The code is particularly useful for the analysis and interpretation of the XAS fine-structure (EXAFS) and the near-edge structure (XANES) in materials throughout the periodic table. Nevertheless, many applications, such as non-equilibrium systems, and the analysis of ultra-fast pump-probe experiments, require extensions of the code including finite-temperature and auxiliary calculations of structure and vibrational properties. To enable these extensions, we have developed in tandem, a new version FEFF10, and new FEFF based workflows for the Corvus workflow manager, which allow users to easily augment the capabilities of FEFF10 via auxiliary codes. This coupling facilitates simplified input and automated calculations of spectra based on advanced theoretical techniques. The approach is illustrated with examples of high temperature behavior, vibrational properties, many-body excitations in XAS, super-heavy materials, and fits of calculated spectra to experiment.



قيم البحث

اقرأ أيضاً

Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in excited-state spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-ho le lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm to these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.
The binary alloy of titanium-tungsten (TiW) is an established diffusion barrier in high-power semiconductor devices, owing to its ability to suppress the diffusion of copper from the metallisation scheme into the surrounding silicon substructure. How ever, little is known about the response of TiW to high temperature events or its behaviour when exposed to air. Here, a combined soft and hard X-ray photoelectron spectroscopy (XPS) characterisation approach is used to study the influence of post-deposition annealing and titanium concentration on the oxidation behaviour of a 300~nm-thick TiW film. The combination of both XPS techniques allows for the assessment of the chemical state and elemental composition across the surface and bulk of the TiW layer. The findings show that in response to high-temperature annealing, titanium segregates out of the mixed metal system and upwardly migrates, accumulating at the TiW/air interface. Titanium shows remarkably rapid diffusion under relatively short annealing timescales and the extent of titanium surface enrichment is increased through longer annealing periods or by increasing the precursor titanium concentration. Surface titanium enrichment enhances the extent of oxidation both at the surface and in the bulk of the alloy due to the strong gettering ability of titanium. Quantification of the soft X-ray photoelectron spectra highlights the formation of three tungsten oxidation environments, attributed to WO$_2$, WO$_3$ and a WO$_3$ oxide coordinated with a titanium environment. This combinatorial characterisation approach provides valuable insights into the thermal and oxidation stability of TiW alloys from two depth perspectives, aiding the development of future device technologies.
The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M emission spectra are compared with ab initio density-functional theory including core-to-valence dipole matrix elements. A qualitative agreement between experiment and theory is obtained. A weak covalent Ti-Al bond is manifested by a pronounced shoulder in the Ti L-emission of Ti3AlC2. As Al is replaced with Si or Ge, the shoulder disappears. For the buried Al and Si-layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and Ti3SiC2, respectively. As a result of relaxation of the crystal structure and the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened. The differences between the electronic structures are discussed in relation to the bonding in the nanolaminates and the corresponding change of materials properties.
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN ES spectra are obtained by solving the Bethe-Salpeter equation of many-body perturbation theory, including excitonic effects through the correlated motion of core-hole and excited electron. We show that accounting for zero-point motion is important for the interpretation and understanding of the measured X-ray absorption fine structure in both materials, in particular for describing the $sigma^*$-peak structure.
A systemically theoretical study has been presented to explored the crystal structures and electronic characteristics of polycyclic aromatic hydrocarbons (PAHs), such as solid phenanthrene, picene, 1,2;8,9-dibenzopentacene, and 7-phenacenes, since th ese PAHs exhibited the superconductivity when potassium doping into. For tripotassium-doped phenanthrene and picene, we demonstrate the K atomic positions to fit the experimental lattice parameters, and analyze the distinction between the stablest configuration and the fitted experimental one. Based on the first-principles calculations, for the first time, we predict the possible crystal configurations of pristine and tripotassium-doped 1,2;8,9-dibenzopentacene and 7-phenacenes, respectively. For these four PAHs, the electronic structures after doping are investigated in details. The results show that the electronic characters near the Fermi level are high sensitive to structure. Because of the change of the benzene rings arrangement, the 1,2;8,9-dibenzopentacene exhibits visibly different band structures from other three PAHs. In these metallic PAHs, two bands cross the Fermi level which results in the complicated multiband feature of Fermi surfaces. Fascinatingly, we find that the electronic states of potassium contribute to the Fermi surfaces especially for K-3$d$ electrons, which improves a way to understand this superconductivity. As a result, we suggest that the rigid-band picture is invalidated due to the hybridization between K atoms and PAH molecules as well as the rearrangement and distortion of PAH molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا