ﻻ يوجد ملخص باللغة العربية
We present results from the first deployment of novel, high definition, compact gas Time Projection Chambers (TPCs) with pixel chip readout as part of the BEAST II beam background measurement project at SuperKEKB. The TPCs provide detailed 3D imaging of ionization from neutron-induced nuclear recoils in a helium and carbon dioxide target gas mixture at standard temperature and pressure. We find excellent electron background rejection, leading to background-free nuclear recoil measurements above 50 keVee, despite the extreme high-background environment. We measure an angular resolution better than 20{deg} for recoil tracks longer than 1.7 mm, corresponding to an average ionization energy of ~100 keVee. We also obtain the 3D vector direction of helium recoils by utilizing charge profile measurements along the recoil axis, with a correct head/tail assignment efficiency of approximately 80%. With this performance, we present comparisons between measured and simulated event rates, recoil energy spectra, and directional distributions originating from beam-gas and Touschek beam losses at SuperKEKB. We utilize head/tail recognition to distinguish neutron components travelling with positive radial velocity in the Belle II coordinate system from those with opposite directionality. Finally, we present a novel method of discriminating beam-gas interactions from Touschek beam losses that can eliminate the need for dedicated accelerator runs for background measurements. This method is still statistics-limited. However, future studies should be able to verify this method, which in turn could lead to neutron background analysis runs symbiotic with normal Belle II operation. The capabilities demonstrated here also suggest that high definition recoil imaging in gas TPCs is applicable to low energy, low-background experiments, such as directional dark matter searches.
The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success
Anisotropic scintillators can offer a unique possibility to exploit the so-called directionality approach in order to investigate the presence of those Dark Matter (DM) candidates inducing nuclear recoils. In fact, their use can overcome the difficul
We report on measurements of beam backgrounds during the first commissioning phase of the SuperKEKB collider in 2016, performed with the plastic scintillator and silicon photomultiplier-based CLAWS detector system. The sub-nanosecond time resolution
Thin pad detectors made from 75 $mu$m thick epitaxial silicon on low resistivity substrate were irradiated with reactor neutrons to fluences from 2.5$times 10^{16}$ n/cm$^2$ to 1$times 10^{17}$ n/cm$^2$. Edge-TCT measurements showed that the active d
A method of measurements of the environmental neutron background at the Baksan Neutrino Observatory of the INR RAS are described. Measurements were done by using of a proportional counter filled with mixture of Ar(2 at)+$^3$He(4 at). The results obta