ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of ZnWO$_4$ anisotropic response to nuclear recoils for the ADAMO project

87   0   0.0 ( 0 )
 نشر من قبل Rita Bernabei
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anisotropic scintillators can offer a unique possibility to exploit the so-called directionality approach in order to investigate the presence of those Dark Matter (DM) candidates inducing nuclear recoils. In fact, their use can overcome the difficulty of detecting extremely short nuclear recoil traces. In this paper we present recent measurements performed on the anisotropic response of a ZnWO$_4$ crystal scintillator to nuclear recoils, in the framework of the ADAMO project. The anisotropic features of the ZnWO$_4$ crystal scintillators were initially measured with $alpha$ particles; those results have been also confirmed by the additional measurements presented here. The experimental nuclear recoil data were obtained by using a neutron generator at ENEA-CASACCIA and neutron detectors to tag the scattered neutrons; in particular, the quenching factor values for nuclear recoils along different crystallographic axes have been determined for three different neutron scattering angles (i.e. nuclear recoils energies). From these measurements, the anisotropy of the light response for nuclear recoils in the ZnWO$_4$ crystal scintillator has been determined at 5.4 standard deviations.

قيم البحث

اقرأ أيضاً

We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $sim$100 keV, we observe an electronic recoil background acceptance of $<10^{-5}$ at a nuclear recoil signal acceptance of 50%. We also observe modest electric field dependence of the discrimination power, which peaks at a field of around 300 V/cm over the range of fields explored in this study (50-500 V/cm). In the WIMP search region of S1 = 1-80 phd, the minimum electronic recoil leakage we observe is ${(7.3pm0.6)times10^{-4}}$, which is obtained for a drift field of 240-290 V/cm. Pulse shape discrimination is utilized to improve our results, and we find that, at low energies and low fields, there is an additional reduction in background leakage by a factor of up to 3. We develop an empirical model for recombination fluctuations which, when used alongside the Noble Element Scintillation Technique (NEST) simulation package, correctly reproduces the skewness of the electronic recoil data. We use this updated simulation to study the width of the electronic recoil band, finding that its dominant contribution comes from electron-ion recombination fluctuations, followed in magnitude of contribution by fluctuations in the S1 signal, fluctuations in the S2 signal, and fluctuations in the total number of quanta produced for a given energy deposition.
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $alpha$-Be neutron sources were used to i nduce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
99 - K.Ueshima , K.Abe , K.Hiraide 2011
In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7pm1.1(stat)pm1.2 0.6(sys)times10-2 at energies between 4.8 and 7.2 keVee and to 7.7pm2.8(stat)pm2.5 2.8(sys)times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4pm0.2(stat)pm0.3 0.2(sys)times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.
The ZnWO$_4$ is an anisotropic crystal scintillator; for its peculiar characteristics, it is a very promising detector to exploit the so-called directionality approach in the investigation of those Dark Matter (DM) candidates inducing nuclear recoils . Recently, in the framework of the ADAMO project, an R&D to develop high quality and ultra-radiopure ZnWO$_4$ crystal scintillators has been carried out. In the present paper the measurements to study the anisotropic response of a ZnWO$_4$ to $alpha$ particles and to nuclear recoils induced by neutron scattering are reported. Monochromatic neutrons have been produced by a neutron generator at ENEA-CASACCIA. The quenching factor values for nuclear recoils along different crystallographic axes have been determined for three different nuclear recoils energies. These results open the possibility to realize a pioneer experiment to investigate the above mentioned DM candidates by means of the directionality.
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector whose purpose is the direct detection of dark matter via NR which can be induced by collisions between Weakly Interacting Massive Particles (WIMPs) and a xenon nucleus. The inner detector volume contains 832 kg of LXe. $^{252}$Cf was used as an external neutron source for irradiating the detector. The scintillation decay time constant of the resulting neutron induced NR was evaluated by comparing the observed photon detection times with Monte Carlo simulations. Fits to the decay time prefer two decay time components, one for each of the Xe$_{2}^{*}$ singlet and triplet states, with $tau_{S}$ = 4.3$pm$0.6 ns taken from prior research, $tau_{T}$ was measured to be 26.9$^{+0.7}_{-1.1}$ ns with a singlet state fraction F$_{S}$ of 0.252$^{+0.027}_{-0.019}$.We also evaluated the performance of pulse shape discrimination between NR and electron recoil (ER) with the aim of reducing the electromagnetic background in WIMP searches. For a 50% NR acceptance, the ER acceptance was 13.7${pm}$1.0% and 4.1${pm}$0.7% in the energy ranges of 5--10 keV$_{rm ee}$ and 10--15 keV$_{rm ee}$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا