ترغب بنشر مسار تعليمي؟ اضغط هنا

General construction of flat bands with and without band crossings based on wave function singularity

118   0   0.0 ( 0 )
 نشر من قبل Yoonseok Hwang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we develop a systematic method of constructing flat-band models with and without band crossings. Our construction scheme utilizes the symmetry and spatial shape of a compact localized state (CLS) and also the singularity of the flat-band wave function obtained by a Fourier transform of the CLS (FT-CLS). In order to construct a flat-band model systematically using these ingredients, we first choose a CLS with a specific symmetry representation in a given lattice. Then, the singularity of FT-CLS indicates whether the resulting flat band exhibits a band crossing point or not. A tight-binding Hamiltonian with the flat band corresponding to the FT-CLS is obtained by introducing a set of basis molecular orbitals, which are orthogonal to the FT-CLS. Our construction scheme can be systematically applied to any lattice so that it provides a powerful theoretical framework to study exotic properties of both gapped and gapless flat bands arising from their wave function singularities.



قيم البحث

اقرأ أيضاً

Exotic phases of matter emerge from the interplay between strong electron interactions and non-trivial topology. Owing to their lack of dispersion at the single-particle level, systems harboring flat bands are excellent testbeds for strongly interact ing physics, with twisted bilayer graphene serving as a prime example. On the other hand, existing theoretical models for obtaining flat bands in crystalline materials, such as the line-graph formalism, are often too restrictive for real-life material realizations. Here we present a generic technique for constructing perfectly flat bands from bipartite crystalline lattices. Our prescription encapsulates and generalizes the various flat band models in the literature, being applicable to systems with any orbital content, with or without spin-orbit coupling. Using Topological Quantum Chemistry, we build a complete topological classification in terms of symmetry eigenvalues of all the gapped and gapless flat bands, for all 1651 Magnetic Space Groups. In addition, we derive criteria for the existence of symmetry-protected band touching points between the flat and dispersive bands, and we identify the gapped flat bands as prime candidates for fragile topological phases. Finally, we show that the set of all (gapped and gapless) perfectly flat bands is finitely generated and construct the corresponding bases for all 1651 Shubnikov Space Groups.
Flat bands have band crossing points with other dispersive bands in many systems including the canonical flat band models in the Lieb and kagome lattices. Here we show that some of such band degeneracy points are unavoidable because of the symmetry r epresentation (SR) of the flat band under unitary symmetry. We refer to such a band degeneracy point of flat bands as a SR-enforced band crossing. SR-enforced band crossing is distinct from the conventional band degeneracy protected by symmetry eigenvalues or topological charges in that its protection requires both specific symmetry representation and band flatness of the flat band, simultaneously. Even $n$-fold rotation $C_n$ ($n=2,3,4,6$) symmetry, which cannot protect band degeneracy without additional symmetries due to its abelian nature, can protect SR-enforced band crossings in flat band systems. In two-dimensional flat band systems with $C_n$ symmetry, when the degeneracy of a SR-enforced band crossing is lifted by a $C_n$ symmetry-preserving perturbation, we obtain a nearly flat Chern band. Our theory not only explains the origin of the band crossing points of FBs existing in various models, but also gives a strict no-go theorem for isolated FBs in a given lattice arising from the SR.
On the basis of the molecular-orbital representation which describes generic flat-band models, we propose a systematic way to construct a class of flat-band models with finite-range hoppings that have topological natures. In these models, the topolog ical natures are encoded not into the flat band itself but into the dispersive bands touching the flat band. Such a band structure may become a source of exotic phenomena arising from the combination of flat bands, topology and correlations.
We show that flat bands can be categorized into two distinct classes, that is, singular and nonsingular flat bands, by exploiting the singular behavior of their Bloch wave functions in momentum space. In the case of a singular flat band, its Bloch wa ve function possesses immovable discontinuities generated by the band-crossing with other bands, and thus the vector bundle associated with the flat band cannot be defined. This singularity precludes the compact localized states from forming a complete set spanning the flat band. Once the degeneracy at the band crossing point is lifted, the singular flat band becomes dispersive and can acquire a finite Chern number in general, suggesting a new route for obtaining a nearly flat Chern band. On the other hand, the Bloch wave function of a nonsingular flat band has no singularity, and thus forms a vector bundle. A nonsingular flat band can be completely isolated from other bands while preserving the perfect flatness. All one-dimensional flat bands belong to the nonsingular class. We show that a singular flat band displays a novel bulk-boundary correspondence such that the presence of the robust boundary mode is guaranteed by the singularity of the Bloch wave function. Moreover, we develop a general scheme to construct a flat band model Hamiltonian in which one can freely design its singular or nonsingular nature. Finally, we propose a general formula for the compact localized state spanning the flat band, which can be easily implemented in numerics and offer a basis set useful in analyzing correlation effects in flat bands.
We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependenc e of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a emph{global} topological charge and show that it is of $mathbb{Z}_2$ type, which is in contrast to the emph{local} topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the $pi$-flux state as well as the SSH model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا