ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonsymmorphic symmetry-required band crossings in topological semimetals

165   0   0.0 ( 0 )
 نشر من قبل Yuxin Zhao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a emph{global} topological charge and show that it is of $mathbb{Z}_2$ type, which is in contrast to the emph{local} topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the $pi$-flux state as well as the SSH model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.

قيم البحث

اقرأ أيضاً

Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual magneto-transport properties. In this paper, we present a complete classification of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we examine the surface states that are associated with the topological band crossings. Implications for experiments and device applications are briefly discussed.
We consider the effect of the Coulomb interaction in a nonsymmorphic Dirac semimetal, leading to collective charge oscillation modes (plasmons), focusing on the model originally predicted by Young and Kane [Phys. Rev. Lett. 115, 126803 (2015)]. We mo del the system in a two-dimensional square-lattice and evaluate the density-density correlation function within the random-phase approximation (RPA) in presence of the Coulomb interaction. The non-interacting band-structure consists of three band-touching points, near which the electronic states follow Dirac equations. Two of these Dirac nodes, at the momentum points $X_1$ and $X_2$ are anisotropic, i.e, disperses with different velocities in different directions, whereas the third Dirac point at $M$ is isotropic. Interestingly we find that, the system of these three Dirac nodes hold a single low-energy plasmon mode, within its particle-hole gap, that disperses in isotropic manner, in the case when the nodes at $X_1$ and $X_2$ are related by symmetry. We also show this analytically using a long-wavelength approximation. We discuss effects of perturbations that can give rise to anisotropic plasmon dispersions and comment on possible experimental observation of our prediction.
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topolo gical insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ proj ectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
Topological Weyl semimetals (TWS) can be classified as type-I TWS, in which the density of states vanishes at the Weyl nodes, and type-II TWS where an electron and a hole pocket meet with finite density of states at the nodal energy. The dispersions of type-II Weyl nodes are tilted and break Lorentz invariance, allowing for physical properties distinct from those in a type-I TWS. We present minimal lattice models for both time-reversal-breaking and inversion-breaking type-II Weyl semimetals, and investigate their bulk properties and topological surface states. These lattice models capture the extended Fermi pockets and the connectivities of Fermi arcs. In addition to the Fermi arcs, which are topologically protected, we identify surface track states that arise out of the topological Fermi arc states at the transition from type-I to type-II with multiple Weyl nodes, and persist in the type-II TWS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا