ﻻ يوجد ملخص باللغة العربية
We derive a novel asymptotic problem-dependent lower-bound for regret minimization in finite-horizon tabular Markov Decision Processes (MDPs). While, similar to prior work (e.g., for ergodic MDPs), the lower-bound is the solution to an optimization problem, our derivation reveals the need for an additional constraint on the visitation distribution over state-action pairs that explicitly accounts for the dynamics of the MDP. We provide a characterization of our lower-bound through a series of examples illustrating how different MDPs may have significantly different complexity. 1) We first consider a difficult MDP instance, where the novel constraint based on the dynamics leads to a larger lower-bound (i.e., a larger regret) compared to the classical analysis. 2) We then show that our lower-bound recovers results previously derived for specific MDP instances. 3) Finally, we show that, in certain simple MDPs, the lower bound is considerably smaller than in the general case and it does not scale with the minimum action gap at all. We show that this last result is attainable (up to $poly(H)$ terms, where $H$ is the horizon) by providing a regret upper-bound based on policy gaps for an optimistic algorithm.
Recently, model-free reinforcement learning has attracted research attention due to its simplicity, memory and computation efficiency, and the flexibility to combine with function approximation. In this paper, we propose Exploration Enhanced Q-learni
We study reinforcement learning in an infinite-horizon average-reward setting with linear function approximation, where the transition probability function of the underlying Markov Decision Process (MDP) admits a linear form over a feature mapping of
We study the $K$-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. We introduce a tight asymptotic regret lower bound that is based on the info
A fundamental question in the theory of reinforcement learning is: suppose the optimal $Q$-function lies in the linear span of a given $d$ dimensional feature mapping, is sample-efficient reinforcement learning (RL) possible? The recent and remarkabl
Partial monitoring is a general model for sequential learning with limited feedback formalized as a game between two players. In this game, the learner chooses an action and at the same time the opponent chooses an outcome, then the learner suffers a