ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the analysis of the distribution of the total magnetic quantum number $M$ in a relativistic subshell with $N$ equivalent electrons of momentum $j$. This distribution is analyzed through its cumulants and through their generating function, for which an analytical expression is provided. This function also allows us to get the values of the cumulants at any order. Such values are useful to obtain the moments at various orders. Since the cumulants of the distinct subshells are additive this study directly applies to any relativistic configuration. Recursion relations on the generating function are given. It is shown that the generating function of the magnetic quantum number distribution may be expressed as a n-th derivative of a polynomial. This leads to recurrence relations for this distribution which are very efficient even in the case of large $j$ or $N$. The magnetic quantum number distribution is numerically studied using the Gram-Charlier and Edgeworth expansions. The inclusion of high-order terms may improve the accuracy of the Gram-Charlier representation for instance when a small and a large angular momenta coexist in the same configuration. However such series does not exhibit convergence when high orders are considered and the account for the first two terms often provides a fair approximation of the magnetic quantum number distribution. The Edgeworth series offers an interesting alternative though this expansion is also divergent and of asymptotic nature.
The impacts of the carrier-envelope phase (CEP) of a long relativistic tightly-focused laser pulse on the dynamics of a counter-propagating electron beam have been investigated in the, so-called, electron reflection regime, requiring the Lorentz fact
Suppose a classical electron is confined to move in the $xy$ plane under the influence of a constant magnetic field in the positive $z$ direction. It then traverses a circular orbit with a fixed positive angular momentum $L_z$ with respect to the cen
We analyze, analytically and numerically, the position, momentum, and in particular the angular-momentum variance of a Bose-Einstein condensate (BEC) trapped in a two-dimensional anisotropic trap for static and dynamic scenarios. The differences betw
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation
In ultracold gases many experiments use atom imaging as a basic observable. The resulting image is averaged over a number of realizations and mostly only this average is used. Only recently the noise has been measured to extract physical information.