ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive Wireless Energy Transfer with Multiple Power Beacons for very large Internet of Things

89   0   0.0 ( 0 )
 نشر من قبل Osmel Mart\\'inez Rosabal
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) comprises an increasing number of low-power and low-cost devices that autonomously interact with the surrounding environment. As a consequence of their popularity, future IoT deployments will be massive, which demands energy-efficient systems to extend their lifetime and improve the user experience. Radio frequency wireless energy transfer has the potential of powering massive IoT networks, thus eliminating the need for frequent battery replacement by using the so-called power beacons (PBs). In this paper, we provide a framework for minimizing the sum transmit power of the PBs using devices positions information and their current battery state. Our strategy aims to reduce the PBs power consumption and to mitigate the possible impact of the electromagnetic radiation on human health. We also present analytical insights for the case of very distant clusters and evaluate their applicability. Numerical results show that our proposed framework reduces the outage probability as the number of PBs and/or the energy demands increase.

قيم البحث

اقرأ أيضاً

147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con sidering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
103 - Ishaan Lodha 2019
The Internet of Things (IoT) is an exploding market as well as a important focus area for research. Security is a major issue for IoT products and solutions, with several massive problems that are still commonplace in the field. In this paper, we hav e successfully minimized the risk of data eavesdropping and tampering over the network by securing these communications using the concept of tunneling. We have implemented this by connecting a router to the internet via a Virtual Private network while using PPTP and L2TP as the underlying protocols for the VPN and exploring their cost benefits, compatibility and most importantly, their feasibility. The main purpose of our paper is to try to secure IoT networks without adversely affecting the selling point of IoT.
In multicell massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) networks, base stations (BSs) with multiple antennas deliver their radio frequency energy in the downlink, and Internet-of-Things (IoT) devices use their harvested energy to support uplink data transmission. This paper investigates the energy efficiency (EE) problem for multicell massive MIMO NOMA networks with wireless power transfer (WPT). To maximize the EE of the network, we propose a novel joint power, time, antenna selection, and subcarrier resource allocation scheme, which can properly allocate the time for energy harvesting and data transmission. Both perfect and imperfect channel state information (CSI) are considered, and their corresponding EE performance is analyzed. Under quality-of-service (QoS) requirements, an EE maximization problem is formulated, which is non-trivial due to non-convexity. We first adopt nonlinear fraction programming methods to convert the problem to be convex, and then, develop a distributed alternating direction method of multipliers (ADMM)- based approach to solve the problem. Simulation results demonstrate that compared to alternative methods, the proposed algorithm can converge quickly within fewer iterations, and can achieve better EE performance.
The Internet of Things combines various earlier areas of research. As a result, research on the subject is still organized around these pre-existing areas: distributed computing with services and objects, networks (usually combining 6lowpan with Zigb ee etc. for the last-hop), artificial intelligence and semantic web, and human-computer interaction. We are yet to create a unified model that covers all these perspectives - domain, device, service, agent, etc. In this paper, we propose the concept of cells as units of structure and context in the Internet of things. This allows us to have a unified vocabulary to refer to single entities (whether dumb motes, intelligent spimes, or virtual services), intranets of things, and finally the complete Internet of things. The question that naturally follows, is what criteria we choose to demarcate boundaries; we suggest various possible answers to this question. We also mention how this concept ties into the existing visions and protocols, and suggest how it may be used as the foundation of a formal model.
We propose a roadmap for leveraging the tremendous opportunities the Internet of Things (IoT) has to offer. We argue that the combination of the recent advances in service computing and IoT technology provide a unique framework for innovations not ye t envisaged, as well as the emergence of yet-to-be-developed IoT applications. This roadmap covers: emerging novel IoT services, articulation of major research directions, and suggestion of a roadmap to guide the IoT and service computing community to address key IoT service challenges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا