ترغب بنشر مسار تعليمي؟ اضغط هنا

An Internet of Things Service Roadmap

162   0   0.0 ( 0 )
 نشر من قبل Sajib Mistry
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a roadmap for leveraging the tremendous opportunities the Internet of Things (IoT) has to offer. We argue that the combination of the recent advances in service computing and IoT technology provide a unique framework for innovations not yet envisaged, as well as the emergence of yet-to-be-developed IoT applications. This roadmap covers: emerging novel IoT services, articulation of major research directions, and suggestion of a roadmap to guide the IoT and service computing community to address key IoT service challenges.


قيم البحث

اقرأ أيضاً

The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users lives more productive, efficient, and convenient. During this process, everyday objects capture a vast amount of data that can be used to understand individuals and their behaviours. In the current IoT ecosystems, such data is collected and used only by the respective IoT solutions. There is no formal way to share data with external entities. We believe this is very efficient and unfair for users. We believe that users, as data owners, should be able to control, manage, and share data about them in any way that they choose and make or gain value out of them. To achieve this, we proposed the Sensing as a Service (S2aaS) model. In this paper, we discuss the Sensing as a Service ecosystem in terms of its architecture, components and related user interaction designs. This paper aims to highlight the weaknesses of the current IoT ecosystem and to explain how S2aaS would eliminate those weaknesses. We also discuss how an everyday user may engage with the S2aaS ecosystem and design challenges.
The Internet of Things combines various earlier areas of research. As a result, research on the subject is still organized around these pre-existing areas: distributed computing with services and objects, networks (usually combining 6lowpan with Zigb ee etc. for the last-hop), artificial intelligence and semantic web, and human-computer interaction. We are yet to create a unified model that covers all these perspectives - domain, device, service, agent, etc. In this paper, we propose the concept of cells as units of structure and context in the Internet of things. This allows us to have a unified vocabulary to refer to single entities (whether dumb motes, intelligent spimes, or virtual services), intranets of things, and finally the complete Internet of things. The question that naturally follows, is what criteria we choose to demarcate boundaries; we suggest various possible answers to this question. We also mention how this concept ties into the existing visions and protocols, and suggest how it may be used as the foundation of a formal model.
The recent history has witnessed disruptive advances in disciplines related to information and communication technologies that have laid a rich technological ecosystem for the growth and maturity of latent paradigms in this domain. Among them, sensor networks have evolved from the originally conceived set-up where hundreds of nodes with sensing and actuating functionalities were deployed to capture information from their environment and act accordingly (coining the so-called wireless sensor network concept) to the provision of such functionalities embedded in quotidian objects that communicate and work together to collaboratively accomplish complex tasks based on the information they acquire by sensing the environment. This is nowadays a reality, embracing the original idea of an Internet of things (IoT) forged in the late twentieth century, yet featuring unprecedented scales, capabilities and applications ignited by new radio interfaces, communication protocols and intelligent data-based models. This chapter examines the latest findings reported in the literature around these topics, with a clear focus on IoT communications, protocols and platforms, towards ultimately identifying opportunities and trends that will be at the forefront of IoT-related research in the near future.
This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response patt ern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios.
Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internets fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا