ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional-radiative non-equilibrium impurity treatment for JOREK simulations

402   0   0.0 ( 0 )
 نشر من قبل Di Hu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A collisional-radiative non-equilibrium impurity treatment for JOREK 3D nonlinear magneto-hydrodynamic (MHD) simulations has been developed. The impurities are represented by super-particles flowing along the fluid velocity field lines, while ionizing and recombining independently according to ADAS data and local fluid density and temperature. The non-equilibrium impurity contributions are then projected back to the fluid field for self-consistent time evolution. A 2D test case is used to compare the new non-equilibrium impurity model against previous Coronal Equilibrium (CE) impurity treatment, as well as to compare the non-equilibrium impurity behavior between the single and the two temperature model. Further, we conduct benchmark with previously published coronal non-equilibrium results by other 3D nonlinear MHD codes such as M3D-C1 and NIMROD. The new non-equilibrium treatment is shown to successfully capture the early phase cooling by weakly ionized impurities which the CE model missed. The benchmarks with M3D-C1 and NIMROD show general agreement in both the integrated quantities and the 2D profile evolution, despite the difference in the atomic model used. The above comparison and benchmark cases demonstrate the capability of the non-equilibrium impurity model for JOREK, paving the way for more sophisticated 3D non-linear Massive Material Injection (MMI) simulations which have important applications in disruption mitigation studies.



قيم البحث

اقرأ أيضاً

The implementation of a resistive-wall extension to the non-linear MHD-code JOREK via a coupling to the vacuum-field code STARWALL is presented along with first applications and benchmark results. Also, non-linear saturation in the presence of a resi stive wall is demonstrated. After completion of the ongoing verification process, this code extension will allow to perform non-linear simulations of MHD instabilities in the presence of three-dimensional resistive walls with holes for limited and X-point plasmas.
109 - Y.-C. Ghim , N. Hershkowitz 2012
Weakly collisional Ar-O2 electronegative plasmas are investigated in a dc multidipole chamber. An electronegative core and an electropositive halo are observed. The density ratio of negative ions to electrons ({alpha}) in the nondrifting bulk is foun d to be 0.43. The profile of {alpha} is found using both the phase velocity of ion acoustic waves and the drift velocity of positive ions determined by laser induced fluorescence. The experiment shows that negative ions are in Boltzmann equilibrium with a temperature of 0.06 pm 0.02 eV. Double layers are not found separating the electronegative core and the electropositive halo.
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy s pecies are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a full fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma densities and incorrect profiles provided by the drift-diffusion models. Therefore, the hybrid code version featuring the full ion fluid model should be favored against the more popular drfit-diffusion model, noting that the suggested numerical scheme for the former model implies only a small additional computational cost.
Gyrokinetic simulations of ion temperature gradient mode and trapped electron mode driven impurity transport in a realistic tokamak geometry are presented and compared with results using simplified geometries. The gyrokinetic results, obtained with t he GENE code in both linear and non-linear modes are compared with data and analysis for a dedicated impurity injection discharge at JET. The impact of several factors on heat and particle transport is discussed, lending special focus to tokamak geometry and rotational shear. To this end, results using s-alpha and concentric circular equilibria are compared with results with magnetic geometry from a JET experiment. To further approach experimental conditions, non-linear gyrokinetic simulations are performed with collisions and a carbon background included. The impurity peaking factors, computed by finding local density gradients corresponding to zero particle flux, are discussed. The impurity peaking factors are seen to be reduced by a factor of ~2 in realistic geometry compared with the simplified geometries, due to a reduction of the convective pinch. It is also seen that collisions reduce the peaking factor for low-Z impurities, while increasing it for high charge numbers, which is attributed to a shift in the transport spectra towards higher wavenumbers with the addition of collisions. With the addition of roto-diffusion, an overall reduction of the peaking factors is observed, but this decrease is not sufficient to explain the flat carbon profiles seen at JET.
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impur ity species are considered in the presence of various types of background instabilities: ITG, TEM and ETG modes for the quasilinear part of the work; ITG and TEM for the nonlinear results. While the quasilinear approach allows one to draw qualitative conclusions about the sign or relative importance of the various contributions to the flux, the nonlinear simulations quantitatively determine the size of the turbulent flux and check the extent to which the quasilinear conclusions hold. Although the bulk of the nonlinear simulations are performed at trace impurity concentration, nonlinear simulations are also carried out at realistic effective charge values, in order to know to what degree the conclusions based on the simulations performed for trace impurities can be extrapolated to realistic impurity concentrations. The presented results conclude that the turbulent radial impurity transport in W7-X is mainly dominated by ordinary diffusion, which is close to that measured during the recent W7-X experimental campaigns. It is also confirmed that thermo-diffusion adds a weak inward flux contribution and that, in the absence of impurity temperature and density gradients, ITG- and TEM-driven turbulence push the impurities inwards and outwards, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا