ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic skyrmion generation by reflective spin-wave focusing

169   0   0.0 ( 0 )
 نشر من قبل Zhenyu Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to generate magnetic skyrmions by focusing spin waves totally reflected by a curved film edge. Based on the principle of identical magnonic path length, we derive the edge contour that is parabolic and frequency-independent. Micromagnetic simulations are performed to verify our theoretical design. It is found that under proper conditions, magnetic droplet first emerges near the focal point where the spin-wave intensity has been significantly enhanced, and then converts to magnetic skyrmion accompanied by a change of the topological charge. The phase diagram about the amplitude and frequency of the driving field for skyrmion generation is obtained. Our finding would be helpful for the designment of spintronic devices combing the advantage of skyrmionics and magnonics.

قيم البحث

اقرأ أيضاً

We propose a new method to generate magnetic skyrmions through spin-wave focusing in chiral ferromagnets.A lens is constructed to focus spin waves by a curved interface between two ferromagnetic thin films with different perpendicular magnetic anisot ropies. Based on the principle of identical magnonic path length, we derive the lens contour that can be either elliptical or hyperbolical depending on the magnon refractive index. Micromagnetic simulations are performed to verify the theoretical design. It is found that under proper condition magnetic skyrmions emerge near the focus point of the lens where the spin-wave intensity has been significantly enhanced. A close investigation shows that a magnetic droplet first forms and then converts to the skyrmion accompanying with a change of topological charge. Phase diagram about the amplitude and duration-time of the exciting field for skyrmion generation is obtained. Our findings would be helpful for designing novel spintronic devices combining the advantages of skyrmionics and magnonics.
Magnonics is seen nowadays as a candidate technology for energy-efficient data processing in classical and quantum systems. Pronounced nonlinearity, anisotropy of dispersion relations and phase degree of freedom of spin waves require advanced methodo logy for probing spin waves at room as well as at mK temperatures. Yet, the use of the established optical techniques like Brillouin light scattering (BLS) or magneto optical Kerr effect (MOKE) at ultra-low temperatures is forbiddingly complicated. By contrast, microwave spectroscopy can be used at all temperatures but is usually lacking spatial and wavenumber resolution. Here, we develop a variable-gap propagating spin-wave spectroscopy (VG-PSWS) method for the deduction of the dispersion relation of spin waves in wide frequency and wavenumber range. The method is based on the phase-resolved analysis of the spin-wave transmission between two antennas with variable spacing, in conjunction with theoretical data treatment. We validate the method for the in-plane magnetized CoFeB and YIG thin films in $kperp B$ and $kparallel B$ geometries by deducing the full set of material and spin-wave parameters, including spin-wave dispersion, hybridization of the fundamental mode with the higher-order perpendicular standing spin-wave modes and surface spin pinning. The compatibility of microwaves with low temperatures makes this approach attractive for cryogenic magnonics at the nanoscale.
We report spin-current generation related with skyrmion dynamics resonantly excited by a microwave in a helimagnetic insulator $mathrm{Cu_2OSeO_3}$. A Pt layer was fabricated on $mathrm{Cu_2OSeO_3}$ and voltage in the Pt layer was measured upon magne tic resonance of $mathrm{Cu_2OSeO_3}$ to electrically detect injected spin currents via the inverse spin Hall effect (ISHE) in Pt. We found that ISHE-induced electromotive forces appear in the skyrmion phase of $mathrm{Cu_2OSeO_3}$ as well as in the ferrimagnetic phase, which shows that magnetic skyrmions can contribute to the spin pumping effect.
Skyrmions and antiskyrmions in magnetic ultrathin films are characterised by a topological charge describing how the spins wind around their core. This topology governs their response to forces in the rigid core limit. However, when internal core exc itations are relevant, the dynamics become far richer. We show that current-induced spin-orbit torques can lead to phenomena such as trochoidal motion and skyrmion-antiskyrmion pair generation that only occurs for either the skyrmion or antiskyrmion, depending on the symmetry of the underlying Dzyaloshinskii-Moriya interaction. Such dynamics are induced by core deformations, leading to a time-dependent helicity that governs the motion of the skyrmion and antiskyrmion core. We compute the dynamical phase diagram through a combination of atomistic spin simulations, reduced-variable modelling, and machine learning algorithms. It predicts how spin-orbit torques can control the type of motion and the possibility to generate skyrmion lattices by antiskyrmion seeding.
264 - Ik-Sun Hong , Kyung-Jin Lee 2019
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy aloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا