ترغب بنشر مسار تعليمي؟ اضغط هنا

Snake graphs and their characteristic polynomials

117   0   0.0 ( 0 )
 نشر من قبل Philipp Lampe
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of the article is to understand the combinatorics of snake graphs by means of linear algebra. In particular, we apply Kasteleyns and Temperley--Fishers ideas about spectral properties of weighted adjacency matrices of planar bipartite graphs to snake graphs. First we focus on snake graphs whose set of turning vertices is monochromatic. We provide recursive sequences to compute the characteristic polynomials; they are indexed by the upper or the lower boundary of the graph and are determined by a neighbour count. As an application, we compute the characteristic polynomials for L-shaped snake graphs and staircases in terms of Fibonacci product polynomials. Next, we introduce a method to compute the characteristic polynomials as convergents of continued fractions. Finally, we show how to transform a snake graph with turning vertices of two colours into a graph with the same number of perfect matchings to which we can apply the results above.



قيم البحث

اقرأ أيضاً

71 - Gilyoung Cheong , Hayan Nam , 2020
We extend an observation due to Stong that the distribution of the number of degree $d$ irreducible factors of the characteristic polynomial of a random $n times n$ matrix over a finite field $mathbb{F}_{q}$ converges to the distribution of the numbe r of length $d$ cycles of a random permutation in $S_{n}$, as $q rightarrow infty$, by having any finitely many choices of $d$, say $d_{1}, dots, d_{r}$. This generalized convergence will be used for the following two applications: the distribution of the cokernel of an $n times n$ Haar-random $mathbb{Z}_{p}$-matrix when $p rightarrow infty$ and a matrix version of Landaus theorem that estimates the number of irreducible factors of a random characteristic polynomial for large $n$ when $q rightarrow infty$.
234 - Takuro Abe 2021
Teraos factorization theorem shows that if an arrangement is free, then its characteristic polynomial factors into the product of linear polynomials over the integer ring. This is not a necessary condition, but there are not so many non-free arrangem ents whose characteristic polynomial factors over the integer ring. On the other hand, the localization of a free arrangement is free, and its restriction is in many cases free, thus its characteristic polynomial factors. In this paper, we consider how their integer, or real roots behave.
The scissors congruence conjecture for the unimodular group is an analogue of Hilberts third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose v ertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
The alternating descent statistic on permutations was introduced by Chebikin as a variant of the descent statistic. We show that the alternating descent polynomials on permutations are unimodal via a five-term recurrence relation. We also found a qua dratic recursion for the alternating major index $q$-analog of the alternating descent polynomials. As an interesting application of this quadratic recursion, we show that $(1+q)^{lfloor n/2rfloor}$ divides $sum_{piinmathfrak{S}_n}q^{rm{altmaj}(pi)}$, where $mathfrak{S}_n$ is the set of all permutations of ${1,2,ldots,n}$ and $rm{altmaj}(pi)$ is the alternating major index of $pi$. This leads us to discover a $q$-analog of $n!=2^{ell}m$, $m$ odd, using the statistic of alternating major index. Moreover, we study the $gamma$-vectors of the alternating descent polynomials by using these two recursions and the ${textbf{cd}}$-index. Further intriguing conjectures are formulated, which indicate that the alternating descent statistic deserves more work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا