ﻻ يوجد ملخص باللغة العربية
Traditionally, character-level transduction problems have been solved with finite-state models designed to encode structural and linguistic knowledge of the underlying process, whereas recent approaches rely on the power and flexibility of sequence-to-sequence models with attention. Focusing on the less explored unsupervised learning scenario, we compare the two model classes side by side and find that they tend to make different types of errors even when achieving comparable performance. We analyze the distributions of different error classes using two unsupervised tasks as testbeds: converting informally romanized text into the native script of its language (for Russian, Arabic, and Kannada) and translating between a pair of closely related languages (Serbian and Bosnian). Finally, we investigate how combining finite-state and sequence-to-sequence models at decoding time affects the output quantitatively and qualitatively.
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks. Yet for character-level transduction tasks, e.g. morphological inflection generation and historical text normaliz
Neural machine translation (NMT) is nowadays commonly applied at the subword level, using byte-pair encoding. A promising alternative approach focuses on character-level translation, which simplifies processing pipelines in NMT considerably. This app
In recent years, Vietnamese Named Entity Recognition (NER) systems have had a great breakthrough when using Deep Neural Network methods. This paper describes the primary errors of the state-of-the-art NER systems on Vietnamese language. After conduct
Training a model for grammatical error correction (GEC) requires a set of labeled ungrammatical / grammatical sentence pairs, but manually annotating such pairs can be expensive. Recently, the Break-It-Fix-It (BIFI) framework has demonstrated strong
Recurrent neural networks (RNNs) have reached striking performance in many natural language processing tasks. This has renewed interest in whether these generic sequence processing devices are inducing genuine linguistic knowledge. Nearly all current