ﻻ يوجد ملخص باللغة العربية
Let ${{bf mathcal{Z}}_n:ngeq 1}$ be a sequence of i.i.d. random probability measures. Independently, for each $ngeq 1$, let $(X_{n1},ldots, X_{nn})$ be a random vector of positive random variables that add up to one. This paper studies the large deviation principles for the randomly weighted sum $sum_{i=1}^{n} X_{ni} mathcal{Z}_i$. In the case of finite Dirichlet weighted sum of Dirac measures, we obtain an explicit form for the rate function. It provides a new measurement of divergence between probabilities. As applications, we obtain the large deviation principles for a class of randomly weighted means including the Dirichlet mean and the corresponding posterior mean. We also identify the minima of relative entropy with mean constraint in both forward and reverse directions.
In this paper, we obtain some results on precise large deviations for non-random and random sums of widely dependent random variables with common dominatedly varying tail distribution or consistently varying tail distribution on $(-infty,infty)$. The
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete
We study one-dimensional nearest neighbour random walk in site-random environment. We establish precise (sharp) large deviations in the so-called ballistic regime, when the random walk drifts to the right with linear speed. In the sub-ballistic regim
We prove that the Beta random walk has second order cubic fluctuations from the large deviation principle of the GUE Tracy-Widom type for arbitrary values $upalpha>0$ and $upbeta>0$ of the parameters of the Beta distribution, removing previous restri
Let $sigma(u)$, $uin mathbb{R}$ be an ergodic stationary Markov chain, taking a finite number of values $a_1,...,a_m$, and $b(u)=g(sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion type process $$ dX^epsilon_t =