ﻻ يوجد ملخص باللغة العربية
Topological properties and topological superconductivity in real materials have attracted intensive experimental and theoretical attention recently. Based on symmetry analysis and first-principles electronic structure calculations, we predict that $R$RuB$_{2}$ ($R$=Y, Lu) are not only topological superconductor (TSC) candidates, but also own the hybrid hourglass-type Dirac ring which is protected by the nonsymmorphic space group symmetry. Due to the band inversion around the time-reversal invariant $Gamma$ point in the Brillouin zone,$R$RuB$_{2}$ also have Dirac topological surface states (TSSs). More importantly, their TSSs on the (010) surface are within the band gap of bulk and cross the Fermi level, which form single Fermi surfaces. Considering the fact that both YRuB$_{2}$ and LuRuB$_{2}$ are superconductors with respective superconducting transition temperatures ($T_c$) of 7.6 K and 10.2 K, the superconducting bulks will likely induce superconductivity in the TSSs via the proximity effect. The ternary borides $R$RuB$_{2}$ may thus provide a very promising platform for studying the properties of topological superconductivity and hourglass fermions in the future experiments.
The remarkable sensitivity of the c-axis resistivity and magnetoresistance in cuprates to the spin ordering is used to clarify the doping-induced transformation from an antiferromagnetic (AF) insulator to a superconducting (SC) metal in RBa_2Cu_3O_{6
Due to the similarity to BaFe2As2 and SrFe2As2 the RFe2Si2 (R=La, Y and Lu) system has been proposed as a potential candidate for a new superconducting family containing Fe-Si layers as a structural unit. Various R(Fe1-xMx)2Si2 M=Ni, Mn and Cu) mater
We use c-axis resistivity and magnetoresistance measurements to study the interplay between antiferromagnetic (AF) and superconducting (SC) ordering in underdoped RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. Both orders are found to emerge from an a
An overview of the recent efforts in point-contact (PC) spectroscopy of the nickel borocarbide superconductors RNi2B2C in the normal and superconducting (SC) state is given. The results of measurements of the PC electron- boson(phonon) interaction sp
The structure of the layered transition-metal Borides $A$B$_2$ ($A =$ Os, Ru) is built up by alternating $T$ and B layers with the B layers forming a puckered honeycomb. Here we report superconducting properties of RuB$_2$ with a $T_c approx 1.5$K us