ﻻ يوجد ملخص باللغة العربية
Due to the similarity to BaFe2As2 and SrFe2As2 the RFe2Si2 (R=La, Y and Lu) system has been proposed as a potential candidate for a new superconducting family containing Fe-Si layers as a structural unit. Various R(Fe1-xMx)2Si2 M=Ni, Mn and Cu) materials were synthesized and measured for their magnetic properties. None of these materials is superconducting down to 5 K. Fe in RFe2Si2 is paramagnetic. A pronounced peak at 232 K was observed in the magnetization curve of YFe2Si2. 57Fe Mossbauer studies confirm the absence of any magnetic ordering at low temperatures. Similar peaks at various temperatures also appear in R(Fe1-xMx)2Si2 samples. Four independent factors affect the peak position and shift it to lower temperatures: (i) the lattice parameters, (ii) the concentration of x, (iii) the applied magnetic field, and (iv) the magnetic nature of M. The peak position is dramatically affected by the magnetic Mn dopants. It is propose that the magnetic peaks observed in RFe2Si2 and in R(Fe1-xMx)2Si2 represent a new nearly ferromagnetic Fermi liquid (NFFL) system and their nature is yet to be determined.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffractio
Local lattice structures of La$_{1.85}$Sr$_{0.15}$Cu$_{1-x}$M$_x$O$_4$ (M=Mn, Ni, and Co) single crystals are investigated by polarized extended x-ray absorption fine structure (EXAFS). The local lattice instability at low temperature is described by
Topological properties and topological superconductivity in real materials have attracted intensive experimental and theoretical attention recently. Based on symmetry analysis and first-principles electronic structure calculations, we predict that $R
We use c-axis resistivity and magnetoresistance measurements to study the interplay between antiferromagnetic (AF) and superconducting (SC) ordering in underdoped RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. Both orders are found to emerge from an a
A new series of cubic double perovskites Ba$_2R_{2/3}$TeO$_6$ ($R$ = Y, La, Pr, Nd, Sm-Lu) was synthesized via solid state reaction. The $R^{3+}$ and Te$^{6+}$ ions are ordered on alternating octahedral sites, with the rare earth sites 2/3 occupied t