ﻻ يوجد ملخص باللغة العربية
We develop a ready-to-use comprehensive theory for (super) 2-vector bundles over smooth manifolds. It is based on the bicategory of (super) algebras, bimodules, and intertwiners as a model for 2-vector spaces. We show that our 2-vector bundles form a symmetric monoidal 2-stack, we discuss the dualizable, fully dualizable, and invertible objects, and we derive a classification in terms of non-abelian Cech cohomology. One important feature of our 2-vector bundles is that they contain bundle gerbes as well as ordinary algebra bundles as full sub-bicategories, and hence provide a unifying framework for these so far distinct objects. We provide several examples of isomorphisms between bundle gerbes and algebra bundles, coming from representation theory, twisted K-theory, and spin geometry.
We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to pr
In this paper, we study a new operation named pushforward on diffeological vector pseudo-bundles, which is left adjoint to the pullback. We show how to pushforward projective diffeological vector pseudo-bundles to get projective diffeological vector
We introduce several families of filtrations on the space of vector bundles over a smooth projective variety. These filtrations are defined using the large k asymptotics of the kernel of the Dolbeault Dirac operator on a bundle twisted by the kth pow
VB-groupoids are vector bundles in the category of Lie groupoids. They encompass several classical objects, including Lie group representations and 2-vector spaces. Moreover, they provide geometric pictures for 2-term representations up to homotopy o
The aim of these notes is to relate covariant stochastic integration in a vector bundle $E$ (as in Norris cite{Norris}) with the usual Stratonovich calculus via the connector $K:TE rightarrow E$ (cf. e.g. Paterson cite{Paterson} or Poor cite{Poor}) which carries the connection dependence.